Discover the most talked about and latest scientific content & concepts.

Concept: Endangered species


Precise modelling of the influence of climate change on Arabica coffee is limited; there are no data available for indigenous populations of this species. In this study we model the present and future predicted distribution of indigenous Arabica, and identify priorities in order to facilitate appropriate decision making for conservation, monitoring and future research. Using distribution data we perform bioclimatic modelling and examine future distribution with the HadCM3 climate model for three emission scenarios (A1B, A2A, B2A) over three time intervals (2020, 2050, 2080). The models show a profoundly negative influence on indigenous Arabica. In a locality analysis the most favourable outcome is a c. 65% reduction in the number of pre-existing bioclimatically suitable localities, and at worst an almost 100% reduction, by 2080. In an area analysis the most favourable outcome is a 38% reduction in suitable bioclimatic space, and the least favourable a c. 90% reduction, by 2080. Based on known occurrences and ecological tolerances of Arabica, bioclimatic unsuitability would place populations in peril, leading to severe stress and a high risk of extinction. This study establishes a fundamental baseline for assessing the consequences of climate change on wild populations of Arabica coffee. Specifically, it: (1) identifies and categorizes localities and areas that are predicted to be under threat from climate change now and in the short- to medium-term (2020-2050), representing assessment priorities for ex situ conservation; (2) identifies ‘core localities’ that could have the potential to withstand climate change until at least 2080, and therefore serve as long-term in situ storehouses for coffee genetic resources; (3) provides the location and characterization of target locations (populations) for on-the-ground monitoring of climate change influence. Arabica coffee is confimed as a climate sensitivite species, supporting data and inference that existing plantations will be neagtively impacted by climate change.

Concepts: Time, Conservation biology, Coffee, Endangered species, Caffeine, In-situ conservation, Coffea arabica, Coffea


The rapid expansion of human activities threatens ocean-wide biodiversity. Numerous marine animal populations have declined, yet it remains unclear whether these trends are symptomatic of a chronic accumulation of global marine extinction risk. We present the first systematic analysis of threat for a globally distributed lineage of 1,041 chondrichthyan fishes-sharks, rays, and chimaeras. We estimate that one-quarter are threatened according to IUCN Red List criteria due to overfishing (targeted and incidental). Large-bodied, shallow-water species are at greatest risk and five out of the seven most threatened families are rays. Overall chondrichthyan extinction risk is substantially higher than for most other vertebrates, and only one-third of species are considered safe. Population depletion has occurred throughout the world’s ice-free waters, but is particularly prevalent in the Indo-Pacific Biodiversity Triangle and Mediterranean Sea. Improved management of fisheries and trade is urgently needed to avoid extinctions and promote population recovery. DOI:

Concepts: Conservation biology, Evolution, Plant, Endangered species, Extinction, Genetic erosion, Gene pool, IUCN Red List


More than US$21 billion is spent annually on biodiversity conservation. Despite their importance for preventing or slowing extinctions and preserving biodiversity, conservation interventions are rarely assessed systematically for their global impact. Islands house a disproportionately higher amount of biodiversity compared with mainlands, much of which is highly threatened with extinction. Indeed, island species make up nearly two-thirds of recent extinctions. Islands therefore are critical targets of conservation. We used an extensive literature and database review paired with expert interviews to estimate the global benefits of an increasingly used conservation action to stem biodiversity loss: eradication of invasive mammals on islands. We found 236 native terrestrial insular faunal species (596 populations) that benefitted through positive demographic and/or distributional responses from 251 eradications of invasive mammals on 181 islands. Seven native species (eight populations) were negatively impacted by invasive mammal eradication. Four threatened species had their International Union for the Conservation of Nature (IUCN) Red List extinction-risk categories reduced as a direct result of invasive mammal eradication, and no species moved to a higher extinction-risk category. We predict that 107 highly threatened birds, mammals, and reptiles on the IUCN Red List-6% of all these highly threatened species-likely have benefitted from invasive mammal eradications on islands. Because monitoring of eradication outcomes is sporadic and limited, the impacts of global eradications are likely greater than we report here. Our results highlight the importance of invasive mammal eradication on islands for protecting the world’s most imperiled fauna.

Concepts: Biodiversity, Conservation biology, Evolution, Species, Animal, Endangered species, Extinction, IUCN Red List


An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world’s ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of biodiversity.

Concepts: Biodiversity, Plant, Ecology, Ecosystem, Endangered species, Extinction, Ecological economics, IUCN Red List


Grauer’s gorilla (Gorilla beringei graueri), the World’s largest primate, is confined to eastern Democratic Republic of Congo (DRC) and is threatened by civil war and insecurity. During the war, armed groups in mining camps relied on hunting bushmeat, including gorillas. Insecurity and the presence of several militia groups across Grauer’s gorilla’s range made it very difficult to assess their population size. Here we use a novel method that enables rigorous assessment of local community and ranger-collected data on gorilla occupancy to evaluate the impacts of civil war on Grauer’s gorilla, which prior to the war was estimated to number 16,900 individuals. We show that gorilla numbers in their stronghold of Kahuzi-Biega National Park have declined by 87%. Encounter rate data of gorilla nests at 10 sites across its range indicate declines of 82-100% at six of these sites. Spatial occupancy analysis identifies three key areas as the most critical sites for the remaining populations of this ape and that the range of this taxon is around 19,700 km2. We estimate that only 3,800 Grauer’s gorillas remain in the wild, a 77% decline in one generation, justifying its elevation to Critically Endangered status on the IUCN Red List of Threatened Species.

Concepts: Endangered species, Democratic Republic of the Congo, Hominidae, Gorilla, Mountain Gorilla, Eastern Gorilla, IUCN Red List, Eastern Lowland Gorilla


Listing endangered and threatened species under the US Endangered Species Act is presumed to offer a defense against extinction and a solution to achieve recovery of imperiled populations, but only if effective conservation action ensues after listing occurs. The amount of government funding available for species protection and recovery is one of the best predictors of successful recovery; however, government spending is both insufficient and highly disproportionate among groups of species, and there is significant discrepancy between proposed and actualized budgets across species. In light of an increasing list of imperiled species requiring evaluation and protection, an explicit approach to allocating recovery funds is urgently needed. Here I provide a formal decision-theoretic approach focusing on return on investment as an objective and a transparent mechanism to achieve the desired recovery goals. I found that less than 25% of the $1.21 billion/year needed for implementing recovery plans for 1,125 species is actually allocated to recovery. Spending in excess of the recommended recovery budget does not necessarily translate into better conservation outcomes. Rather, elimination of only the budget surplus for “costly yet futile” recovery plans can provide sufficient funding to erase funding deficits for more than 180 species. Triage by budget compression provides better funding for a larger sample of species, and a larger sample of adequately funded recovery plans should produce better outcomes even if by chance. Sharpening our focus on deliberate decision making offers the potential to achieve desired outcomes in avoiding extinction for Endangered Species Act-listed species.

Concepts: Biodiversity, Endangered species, Extinction, Endangered Species Act, Biodiversity Action Plan, IUCN Red List, Threatened species, Recovery Plan


Quantifying environmental crime and the effectiveness of policy interventions is difficult because perpetrators typically conceal evidence. To prevent illegal uses of natural resources, such as poaching endangered species, governments have advocated granting policy flexibility to local authorities by liberalizing culling or hunting of large carnivores. We present the first quantitative evaluation of the hypothesis that liberalizing culling will reduce poaching and improve population status of an endangered carnivore. We show that allowing wolf (Canis lupus) culling was substantially more likely to increase poaching than reduce it. Replicated, quasi-experimental changes in wolf policies in Wisconsin and Michigan, USA, revealed that a repeated policy signal to allow state culling triggered repeated slowdowns in wolf population growth, irrespective of the policy implementation measured as the number of wolves killed. The most likely explanation for these slowdowns was poaching and alternative explanations found no support. When the government kills a protected species, the perceived value of each individual of that species may decline; so liberalizing wolf culling may have sent a negative message about the value of wolves or acceptability of poaching. Our results suggest that granting management flexibility for endangered species to address illegal behaviour may instead promote such behaviour.

Concepts: Biodiversity, Endangered species, Hunting, Dog, Gray Wolf, Canis, Endangered Species Act, Tiger


Our objective was to ascertain the population status of the Pygmy Three-toed Sloth, Bradypus pygmaeus, an IUCN Critically Endangered species, on Isla Escudo de Veraguas, Panama. Bradypus pygmaeus are thought to be folivorous mangrove specialists; therefore we conducted a visual systematic survey of all 10 mangrove thickets on the island. The total mangrove habitat area was measured to be 1.67 ha, comprising 0.024% of the total island area. The population survey found low numbers of B. pygmaeus in the mangrove thickets and far lower numbers outside of them. The connectivity of subpopulations between these thickets on the island is not established, as B. pygmaeus movement data is still lacking. We found 79 individuals of B. pygmaeus; 70 were found in mangroves and 9 were observed just beyond the periphery of the mangroves in non-mangrove tree species. Low population number, habitat fragmentation and habitat loss could lead to inbreeding, a loss of genetic diversity, and extinction of B. pygmaeus.

Concepts: Biodiversity, Mammal, Endangered species, Extinction, Three-toed sloth, Pygmy Three-toed Sloth, Sloth, Pilosans


Anthropogenic disturbances are ubiquitous in the ocean, but their impacts on marine species are hotly debated. We evaluated marine fish statuses using conservation (Red List threatened or not) and fisheries (above or below reference points) metrics, compared their alignment, and diagnosed why discrepancies arise. Whereas only 13.5% of Red Listed marine fishes (n = 2952) are threatened, 40% and 21% of populations with stock assessments (n = 166) currently are below their more conservative and riskier reference points, respectively. Conservation and fisheries metrics aligned well (70.5% to 80.7%), despite their mathematical disconnect. Red Listings were not biased towards exaggerating threat status, and egregious errors, where populations were categorized at opposite extremes of fisheries and conservation metrics, were rare. Our analyses suggest conservation and fisheries scientists will agree on the statuses of exploited marine fishes in most cases, leaving only the question of appropriate management responses for populations of mutual concern still unresolved.

Concepts: Fish, Endangered species, Extinction, Ocean, Overfishing, Conservation, Population dynamics of fisheries, IUCN Red List


Captive breeding and rearing are central elements in conservation, management, and recovery planning for many endangered species including Rio Grande Silvery Minnow, a North American freshwater cyprinid. Traditionally, the sole purpose of hatcheries was to produce as many fish as feasible for stocking and harvest. Production quotas are also an important consideration in hatchery programs for endangered species, but they must also maintain and maximize genetic diversity of fish produced through implementation of best breeding practices. Here, we assessed genetic outcomes and measures of productivity (number of eggs and larval viability) for three replicates of three mating designs that are used for this small, pelagic-spawning fish. These were 1) monogamous mating, 2) hormone-induced communal spawning, and 3) environmentally cued communal spawning. A total of 180 broodstock and 450 progeny were genotyped. Genetic diversity and egg productivity did not differ significantly among spawning designs (H e : F = 0.52, P = 0.67; H o : F = 0.12, P = 0.89; number of eggs: F = 3.59, P = 0.09), and there was evidence for variance in reproductive success among individuals in all three designs. Allelic richness declined from the broodstock to progeny generation in all breeding designs. There was no significant difference in the genetic effective size (regardless of the method used) among designs. Significantly more viable eggs were produced in environmentally cued communal spawn compared to the alternative strategies (F = 5.72, P = 0.04), but this strategy is the most difficult to implement.

Concepts: Biodiversity, Species, Endangered species, Implementation, Design, Fishing, Conservation, Ex-situ conservation