Discover the most talked about and latest scientific content & concepts.

Concept: Emulator


Origami can turn a sheet of paper into complex three-dimensional shapes, and similar folding techniques can produce structures and mechanisms. To demonstrate the application of these techniques to the fabrication of machines, we developed a crawling robot that folds itself. The robot starts as a flat sheet with embedded electronics, and transforms autonomously into a functional machine. To accomplish this, we developed shape-memory composites that fold themselves along embedded hinges. We used these composites to recreate fundamental folded patterns, derived from computational origami, that can be extrapolated to a wide range of geometries and mechanisms. This origami-inspired robot can fold itself in 4 minutes and walk away without human intervention, demonstrating the potential both for complex self-folding machines and autonomous, self-controlled assembly.

Concepts: Developed country, Demonstration, Computer, Robot, Machine, Functional programming, Emulator, Fold


Forest cover in the eastern United States has increased over the past century and while some late-successional species have benefited from this process as expected, others have experienced population declines. These declines may be in part related to contemporary reductions in small-scale forest interior disturbances such as fire, windthrow, and treefalls. To mitigate the negative impacts of disturbance alteration and suppression on some late-successional species, strategies that emulate natural disturbance regimes are often advocated, but large-scale evaluations of these practices are rare. Here, we assessed the consequences of experimental disturbance (using partial timber harvest) on a severely declining late-successional species, the cerulean warbler (Setophaga cerulea), across the core of its breeding range in the Appalachian Mountains. We measured numerical (density), physiological (body condition), and demographic (age structure and reproduction) responses to three levels of disturbance and explored the potential impacts of disturbance on source-sink dynamics. Breeding densities of warblers increased one to four years after all canopy disturbances (vs. controls) and males occupying territories on treatment plots were in better condition than those on control plots. However, these beneficial effects of disturbance did not correspond to improvements in reproduction; nest success was lower on all treatment plots than on control plots in the southern region and marginally lower on light disturbance plots in the northern region. Our data suggest that only habitats in the southern region acted as sources, and interior disturbances in this region have the potential to create ecological traps at a local scale, but sources when viewed at broader scales. Thus, cerulean warblers would likely benefit from management that strikes a landscape-level balance between emulating natural disturbances in order to attract individuals into areas where current structure is inappropriate, and limiting anthropogenic disturbance in forests that already possess appropriate structural attributes in order to maintain maximum productivity.

Concepts: Human, Biology, Appalachian Mountains, Ecological succession, Emulator, New World warbler, Disturbance, Warbler


To investigate the influence of ion pairing of carboxylated multiwalled carbon nanotubes (MWCNT-COOH) and polycations on the layer-by-layer assembly of nanocomposites and their biocompatibility for biomedical applications.

Concepts: Carbon, Carbon nanotube, Allotropes of carbon, Graphite, Tensile strength, Chemical vapor deposition, Emulator


The accumulation and extrusion of Ca(2+) in the pre- and postsynaptic compartments play a critical role in initiating plastic changes in biological synapses. To emulate this fundamental process in electronic devices, we developed diffusive Ag-in-oxide memristors with a temporal response during and after stimulation similar to that of the synaptic Ca(2+) dynamics. In situ high-resolution transmission electron microscopy and nanoparticle dynamics simulations both demonstrate that Ag atoms disperse under electrical bias and regroup spontaneously under zero bias because of interfacial energy minimization, closely resembling synaptic influx and extrusion of Ca(2+), respectively. The diffusive memristor and its dynamics enable a direct emulation of both short- and long-term plasticity of biological synapses, representing an advance in hardware implementation of neuromorphic functionalities.

Concepts: Electron, Electricity, Computer simulation, Electronic engineering, Emulator


Human activities increasingly take place in online environments, providing novel opportunities for relating individual behaviors to population-level outcomes. In this paper, we introduce a simple generative model for the collective behavior of millions of social networking site users who are deciding between different software applications. Our model incorporates two distinct mechanisms: one is associated with recent decisions of users, and the other reflects the cumulative popularity of each application. Importantly, although various combinations of the two mechanisms yield long-time behavior that is consistent with data, the only models that reproduce the observed temporal dynamics are those that strongly emphasize the recent popularity of applications over their cumulative popularity. This demonstrates-even when using purely observational data without experimental design-that temporal data-driven modeling can effectively distinguish between competing microscopic mechanisms, allowing us to uncover previously unidentified aspects of collective online behavior.

Concepts: Scientific method, Philosophy of science, Model, Human behavior, Computer software, Application software, Emulator, Theories of political behavior


Many natural micrometre-scale assemblies can be actuated to control their optical, transport and mechanical properties, yet such functionality is lacking in colloidal structures synthesized thus far. Here, we show with experiments and computer simulations that Janus ellipsoids can self-assemble into self-limiting one-dimensional fibres with shape-memory properties, and that the fibrillar assemblies can be actuated on application of an external alternating-current electric field. Actuation of the fibres occurs through a sliding mechanism that permits the rapid and reversible elongation and contraction of the Janus-ellipsoid chains by ~36% and that on long timescales leads to the generation of long, uniform self-assembled fibres. Colloidal-scale actuation might be useful in microrobotics and in applications of shape-memory materials.

Concepts: Engineering, Computer graphics, Computer simulation, Electrical engineering, Mathematical model, Computer software, Computational science, Emulator


The HTSstation analysis portal is a suite of simple web forms coupled to modular analysis pipelines for various applications of High-Throughput Sequencing including ChIP-seq, RNA-seq, 4C-seq and re-sequencing. HTSstation offers biologists the possibility to rapidly investigate their HTS data using an intuitive web application with heuristically pre-defined parameters. A number of open-source software components have been implemented and can be used to build, configure and run HTS analysis pipelines reactively. Besides, our programming framework empowers developers with the possibility to design their own workflows and integrate additional third-party software. The HTSstation web application is accessible at

Concepts: Computer program, Web application, System software, Computer software, Application software, Software architecture, Emulator, Web application framework


Grid-based perception techniques in the automotive sector based on fusing information from different sensors and their robust perceptions of the environment are proliferating in the industry. However, one of the main drawbacks of these techniques is the traditionally prohibitive, high computing performance that is required for embedded automotive systems. In this work, the capabilities of new computing architectures that embed these algorithms are assessed in a real car. The paper compares two ad hoc optimized designs of the Bayesian Occupancy Filter; one for General Purpose Graphics Processing Unit (GPGPU) and the other for Field-Programmable Gate Array (FPGA). The resulting implementations are compared in terms of development effort, accuracy and performance, using datasets from a realistic simulator and from a real automated vehicle.

Concepts: Mind, Computer graphics, Logic gate, Emulator, Algorithmic efficiency, Field-programmable gate array, Application-specific integrated circuit, Gate array


The Oxford Nanopore MinION device represents a unique sequencing technology. As a mobile sequencing device powered by the USB port of a laptop, the MinION has huge potential applications. To enable these applications, the bioinformatics community will need to design and build a suite of tools specifically for MinION data.

Concepts: DNA, Molecular biology, Engineering, Computer program, Smartphone, Computational science, Emulator, Wi-Fi


Biomedical researchers share a common challenge of making complex data understandable and accessible as they seek inherent relationships between attributes in disparate data types. Data discovery in this context is limited by a lack of query systems that efficiently show relationships between individual variables, but without the need to navigate underlying data models. We have addressed this need by developing Harvest, an open-source framework of modular components, and using it for the rapid development and deployment of custom data discovery software applications. Harvest incorporates visualizations of highly dimensional data in a web-based interface that promotes rapid exploration and export of any type of biomedical information, without exposing researchers to underlying data models. We evaluated Harvest with two cases: clinical data from pediatric cardiology and demonstration data from the OpenMRS project. Harvest’s architecture and public open-source code offer a set of rapid application development tools to build data discovery applications for domain-specific biomedical data repositories. All resources, including the OpenMRS demonstration, can be found at

Concepts: Computer program, Computer software, Application software, Type system, Emulator, Rapid application development, Web application framework, Software framework