SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Electronics terms

164

The newly proposed in-plane resonant nano-electro-mechanical (IP R-NEM) sensor, that includes a doubly clamped suspended beam and two side electrodes, achieved a mass sensitivity of less than zepto g/Hz based on analytical and numerical analyses. The high frequency characterization and numerical/analytical studies of the fabricated sensor show that the high vacuum measurement environment will ease the resonance detection using the capacitance detection technique if only the thermoelsatic damping plays a dominant role for the total quality factor of the sensor. The usage of the intrinsic junction-less field-effect-transistor (JL FET) for the resonance detection of the sensor provides a more practical detection method for this sensor. As the second proposed sensor, the introduction of the monolithically integrated in-plane MOSFET with the suspended beam provides another solution for the ease of resonance frequency detection with similar operation to the junction-less transistor in the IP R-NEM sensor. The challenging fabrication technology for the in-plane resonant suspended gate field-effect-transistor (IP RSG-FET) sensor results in some post processing and simulation steps to fully explore and improve the direct current (DC) characteristics of the sensor for the consequent high frequency measurement. The results of modeling and characterization in this research provide a realistic guideline for these potential ultra-sensitive NEM sensors.

Concepts: Transistor, Electronics terms, Optical cavity, Q factor, Damping, RLC circuit, Harmonic oscillator, Resonance

34

Wrinkles are just one indicator of facial aging, but an indicator that is of prime importance in our world of facial aesthetics. Wrinkles occur where fault lines develop in aging skin. Those fault lines may be due to skin distortion resulting from facial expression or may be due to skin distortion from mechanical compression during sleep. Expression wrinkles and sleep wrinkles differ in etiology, location, and anatomical pattern. Compression, shear, and stress forces act on the face in lateral or prone sleep positions. We review the literature relating to the development of wrinkles and the biomechanical changes that occur in response to intrinsic and extrinsic influences. We explore the possibility that compression during sleep not only results in wrinkles but may also contribute to facial skin expansion.

Concepts: Electronics terms, Force, Geology, Structural geology, Shear, Fault

29

Miniaturization of optoelectronic devices offers tremendous performance gain. As the volume of photoactive material decreases, optoelectronic performance improves, including the operation speed, the signal-to-noise ratio, and the internal quantum efficiency. Over the past decades, researchers have managed to reduce the volume of photoactive materials in solar cells and photodetectors by orders of magnitude. However, two issues arise when one continues to thin down the photoactive layers to the nanometer scale (for example, <50 nm). First, light-matter interaction becomes weak, resulting in incomplete photon absorption and low quantum efficiency. Second, it is difficult to obtain ultrathin materials with single-crystalline quality. We introduce a method to overcome these two challenges simultaneously. It uses conventional bulk semiconductor wafers, such as Si, Ge, and GaAs, to realize single-crystalline films on foreign substrates that are designed for enhanced light-matter interaction. We use a high-yield and high-throughput method to demonstrate nanometer-thin photodetectors with significantly enhanced light absorption based on nanocavity interference mechanism. These single-crystalline nanomembrane photodetectors also exhibit unique optoelectronic properties, such as the strong field effect and spectral selectivity.

Concepts: Light, Absorption, Electronics terms, Photodiode, Photon, Germanium, Solar cell, Semiconductor

27

Surface covalent organic frameworks (SCOFs), featured by atomic thick sheet with covalently bonded organic building units, are promised to possess unique properties associated with reduced dimensionality, well-defined in-plane structure, and tunable functionality. Although a great deal of efforts has been made to obtain SCOFs with different linkages and building blocks via both “top-down” exfoliation and “bottom-up” on surface synthesis approaches, the obtained SCOFs generally suffer a low crystallinity, which impedes the understanding of intrinsic properties of the materials. Herein, we demonstrate a self-limiting solid-vapor interface reaction strategy to fabricate highly ordered SCOFs. The coupling reaction is tailored to take place at the solid-vapor interface by introducing one precursor via vaporization to the surface pre-loaded with the other precursor. Following this strategy, highly ordered honeycomb SCOFs with imine linkage are obtained. The controlled formation of SCOFs in our study shows the possibility to a rational design and synthesis of SCOFs with desired functionality.

Concepts: Genetic linkage, Electronics terms, Intrinsic and extrinsic properties, Covalent bond, Atom, Chemical reaction

26

Flies use so-called halteres to sense body rotation based on Coriolis forces for supporting equilibrium reflexes. Inspired by these halteres, a biomimetic gimbal-suspended gyroscope has been developed using microelectromechanical systems (MEMS) technology. Design rules for this type of gyroscope are derived, in which the haltere-inspired MEMS gyroscope is geared towards a large measurement bandwidth and a fast response, rather than towards a high responsivity. Measurements for the biomimetic gyroscope indicate a (drive mode) resonance frequency of about 550 Hz and a damping ratio of 0.9. Further, the theoretical performance of the fly’s gyroscopic system and the developed MEMS haltere-based gyroscope is assessed and the potential of this MEMS gyroscope is discussed.

Concepts: Vibrating structure gyroscope, Harmonic oscillator, Electronics terms, Halteres, Microelectromechanical systems, Resonance, Coriolis effect, Damping

25

Two-dimensional layered transition-metal dichalcogenides have attracted considerable interest for their unique layer-number-dependent properties. In particular, vertical integration of these two-dimensional crystals to form van der Waals heterostructures can open up a new dimension for the design of functional electronic and optoelectronic devices. Here we report the layer-number-dependent photocurrent generation in graphene/MoS2/graphene heterostructures by creating a device with two distinct regions containing one-layer and seven-layer MoS2 to exclude other extrinsic factors. Photoresponse studies reveal that photoresponsivity in one-layer MoS2 is surprisingly higher than that in seven-layer MoS2 by seven times. Spectral-dependent studies further show that the internal quantum efficiency in one-layer MoS2 can reach a maximum of 65%, far higher than the 7% in seven-layer MoS2. Our theoretical modelling shows that asymmetric potential barriers in the top and bottom interfaces of the graphene/one-layer MoS2/graphene heterojunction enable asymmetric carrier tunnelling, to generate usually high photoresponsivity in one-layer MoS2 device.

Concepts: Dimension, Optoelectronics, String theory, Vector space, Motivation, Semiconductor, Heterojunction, Electronics terms

25

We propose a compact, wideband terahertz and infrared absorber, comprising a patterned graphene sheet on a thin metal-backed dielectric slab. This graphene-based nanostructure can achieve a low or negative effective permeability, necessary for realizing the perfect absorption. The dual-reactive property found in both the plasmonic graphene sheet and the grounded high-permittivity slab introduces extra poles into the equivalent circuit model of the system, thereby resulting in a dual-band or broadband magnetic resonance that enhances the absorption bandwidth. More interestingly, the two-dimensional patterned graphene sheet significantly simplifies the design and fabrication processes for achieving resonant magnetic response, and allows the frequency-reconfigurable operation via electrostatic gating.

Concepts: Magnetic field, Magnetic moment, Electronics terms, Wideband, Electron, Narrowband, Electromagnetism, Nuclear magnetic resonance

25

Transverse-electric (TE) resonant optical tunneling through an asymmetric, single-barrier potential system consisting of all passive materials in two-dimensional (2-D) glass/silver/TiO2/air configuration is quantified at a silver thickness of 35 nm. Resonant tunneling occurs when the incident condition corresponds to the excitation of a radiation mode. Lasing-like transmission occurring at resonance is carefully qualified in terms of power conservation, resonance condition, and identification of the gain medium equivalent. In particular, effective gain (geff) and threshold gain (gth) coefficients, both of which are strong functions of the forward reflection coefficient at the silver-TiO2 interface, are analytically obtained and the angular span over which geff > gth is further verified rigorously electromagnetically. The results show that the present configuration may be treated as a cascade of the gain equivalent (i.e. the silver film) and the TiO2 resonator that is of Fabry-Perot type, giving rise to negative gth when resonant tunneling occurs. The transmittance spectrum exhibiting a gain-curve-like envelope is shown to be a direct consequence of the competition of the resonator loss at the silver-TiO2 interface and the forward tunneling probability through the silver barrier, all controlled by the effective silver barrier thickness.

Concepts: Quantum tunnelling, 2006 albums, Mechanical resonance, Acoustic resonance, Electronics terms, Resonator, Resonance, Vector space

24

The realization of low-cost photodetectors with high sensitivity, high quantum efficiency, high gain and fast photoresponse in the visible and short-wave infrared remains one of the challenges in optoelectronics. Two classes of photodetectors that have been developed are photodiodes and phototransistors, each of them with specific drawbacks. Here we merge both types into a hybrid photodetector device by integrating a colloidal quantum dot photodiode atop a graphene phototransistor. Our hybrid detector overcomes the limitations of a phototransistor in terms of speed, quantum efficiency and linear dynamic range. We report quantum efficiencies in excess of 70%, gain of 10(5) and linear dynamic range of 110 dB and 3 dB bandwidth of 1.5 kHz. This constitutes a demonstration of an optoelectronically active device integrated directly atop graphene and paves the way towards a generation of flexible highly performing hybrid two-dimensional (2D)/0D optoelectronics.

Concepts: Infrared, Optoelectronics, Diode, Electronics terms, Photodetector, Solar cell, Photodiode

24

A larger ratio of conduction-band offset to valence-band offset is the unique character for MgxZn1-xO alloys. For this reason, it is feasible to build a quasi-electric forces, caused by the spatial gradient of the conduction edge, exerting on the electrons. In this paper, a novel graded band gap cubic-MgZnO-based solar-blind photodetector is successfully fabricated from Graded-Band-Gap-Cubic-MgZnO/i-MgO/p-Si heterojunction, via changing stoichiometry spatial gradient. Due to quasi-electric fields in non-uniform MgZnO, the multiple carriers are generated under ultra-low threshold bias voltage. The photodetector showed high performance, namely, high responsivity, quantum efficiency, high sensitivity and selectivity towards the solar-blind spectrum, and fast response times.

Concepts: Scalar field, Condensed matter physics, Semiconductor, Positive predictive value, Selectivity, Responsivity, Sensitivity and specificity, Electronics terms