Discover the most talked about and latest scientific content & concepts.

Concept: Electron beam lithography


To pattern electrical metal contacts, electron beam lithography or photolithography are commonly utilized, and these processes require polymer resists with solvents. During the patterning process the graphene surface is exposed to chemicals, and the residue on the graphene surface was unable to be completely removed by any method, causing the graphene layer to be contaminated. A lithography free method can overcome these residue problems. In this study, we use a micro-grid as a shadow mask to fabricate a graphene based field-effect-transistor (FET). Electrical measurements of the graphene based FET samples are carried out in air and vacuum. It is found that the Dirac peaks of the graphene devices on SiO2 or on hexagonal boron nitride (hBN) shift from a positive gate voltage region to a negative region as air pressure decreases. In particular, the Dirac peaks shift very rapidly when the pressure decreases from ~2 × 10(-3) Torr to ~5 × 10(-5) Torr within 5 minutes. These Dirac peak shifts are known as adsorption and desorption of environmental gases, but the shift amounts are considerably different depending on the fabrication process. The high gas sensitivity of the device fabricated by shadow mask is attributed to adsorption on the clean graphene surface.

Concepts: Pascal, Photolithography, Gas, Vacuum, Boron nitride, Electron, Pressure, Electron beam lithography


Heavily boron-doped silicon layers and boron etch-stop techniques have been widely used in the fabrication of microelectromechanical systems (MEMS). This paper provides an introduction to the fabrication process of nanoscale silicon thermoelectric devices. Low-dimensional structures such as silicon nanowire (SiNW) have been considered as a promising alternative for thermoelectric applications in order to achieve a higher thermoelectric figure of merit (ZT) than bulk silicon. Here, heavily boron-doped silicon layers and boron etch-stop processes for the fabrication of suspended SiNWs will be discussed in detail, including boron diffusion, electron beam lithography, inductively coupled plasma (ICP) etching and tetramethylammonium hydroxide (TMAH) etch-stop processes. A 7 μm long nanowire structure with a height of 280 nm and a width of 55 nm was achieved, indicating that the proposed technique is useful for nanoscale fabrication. Furthermore, a SiNW thermoelectric device has also been demonstrated, and its performance shows an obvious reduction in thermal conductivity.

Concepts: Thermoelectric cooling, Tetramethylammonium hydroxide, Dry etching, Microelectromechanical systems, Nanotechnology, Electron beam lithography, Thermoelectric effect, Photolithography


A thermocouple of Au-Ni with only 2.5-μm-wide electrodes on a 30-nm-thick Si3N4 membrane was fabricated by a simple low-resolution electron beam lithography and lift off procedure. The thermocouple is shown to be sensitive to heat generated by laser as well as an electron beam. Nano-thin membrane was used to reach a high spatial resolution of energy deposition and to realise a heat source of sub-1 μm diameter. This was achieved due to a limited generation of secondary electrons, which increase a lateral energy deposition. A low thermal capacitance of the fabricated devices is useful for the real time monitoring of small and fast temperature changes, e.g., due to convection, and can be detected through an optical and mechanical barrier of the nano-thin membrane. Temperature changes up to ~2 × 105 K/s can be measured at 10 kHz rate. A simultaneous down-sizing of both, the heat detector and heat source strongly required for creation of thermal microscopy is demonstrated. Peculiarities of Seebeck constant (thermopower) dependence on electron injection into thermocouple are discussed. Modeling of thermal flows on a nano-membrane with presence of a micro-thermocouple was carried out to compare with experimentally measured temporal response.

Concepts: Light, Energy, Fundamental physics concepts, Temperature, Thermodynamics, Electron beam lithography, Heat, Electron


The Monte Carlo software CASINO has been expanded with new modules for the simulation of complex beam scanning patterns, for the simulation of cathodoluminescence (CL), and for the calculation of electron energy deposition in subregions of a three-dimensional (3D) volume. Two examples are presented of the application of these new capabilities of CASINO. First, the CL emission near threading dislocations in gallium nitride (GaN) was modeled. The CL emission simulation of threading dislocations in GaN demonstrated that a better signal-to-noise ratio was obtained with lower incident electron energy than with higher energy. Second, the capability to simulate the distribution of the deposited energy in 3D was used to determine exposure parameters for polymethylmethacrylate resist using electron-beam lithography (EBL). The energy deposition dose in the resist was compared for two different multibeam EBL schemes by changing the incident electron energy.

Concepts: Photon, Gallium, Nitride, Electron beam lithography, Monte Carlo, Simulation, Monte Carlo method, Gallium nitride


At monolayer coverage, silicene on Ag(1 1 1) may present different structural phases depending on the growth conditions. At multilayer coverage, only one structural phase has been reported: the [Formula: see text] phase. However, no link between the structural arrangement of the monolayer and that of the multilayer has been addressed. In this paper, reporting experimental work based on low-energy electron diffraction and scanning tunneling microscopy, we focus on the structural aspects of a multilayer film of silicene. We demonstrate that it exhibits one structural arrangement, namely the [Formula: see text] form, but with different domain orientations resulting from the structural properties of the initial wetting monolayer.

Concepts: Electron beam lithography, Electron microscope, Low-energy electron diffraction, Scanning probe microscopy, Diffraction, Microscopy, Scanning tunneling microscope, Electron


The bright and iridescent blue color from Morpho butterfly wings has attracted worldwide attentions to explore its mysterious nature for long time. Although the physics of structural color by the nanophotonic structures built on the wing scales has been well established, replications of the wing structure by standard top-down lithography still remains a challenge. This paper reports a technical breakthrough to mimic the blue color of Morpho butterfly wings, by developing a novel nanofabrication process, based on electron beam lithography combined with alternate PMMA/LOR development/dissolution, for photonic structures with aligned lamellae multilayers in colorless polymers. The relationship between the coloration and geometric dimensions as well as shapes is systematically analyzed by solving Maxwell’s Equations with a finite domain time difference simulator. Careful characterization of the mimicked blue by spectral measurements under both normal and oblique angles are carried out. Structural color in blue reflected by the fabricated wing scales, is demonstrated and further extended to green as an application exercise of the new technique. The effects of the regularity in the replicas on coloration are analyzed. In principle, this approach establishes a starting point for mimicking structural colors beyond the blue in Morpho butterfly wings.

Concepts: Colorless, Structure, Electron beam lithography, Maxwell's equations, Lepidoptera, Electron, Light, Color


DNA origami nanostructures have been used extensively as scaffolds for numerous applications such as for organizing both organic and inorganic nanomaterials, studying single molecule reactions and fabricating photonic devices. Yet, little has been done towards the integration of DNA origami nanostructures into nanoelectronic devices. Among other challenges, the technical difficulties in producing well-defined electrical contacts between macroscopic electrodes and individual DNA origami-based nanodevices represents a serious bottleneck that hinders the thorough characterization of such devices. Therefore, in this work, we have developed a method to electrically contact individual DNA origami-based metallic nanowires using electron beam lithography. We then characterize the charge transport of such nanowires in the temperature range from room temperature down to 4.2 K. The room temperature charge transport measurement exhibit ohmic behavior, whereas at lower temperatures, multiple charge transport mechanisms such as tunneling and thermally assisted transport start to dominate. Our results confirm that charge transport along metallized DNA origami nanostructures may deviate from pure metallic behavior due to several factors including partial metallization, seed inhomogeneities, impurities, and weak electronic coupling among AuNPs. Besides, this study further elucidates the importance of variable temperature measurements for determining the dominant charge transport mechanisms for conductive nanostructures made by self-assembly approaches.

Concepts: Nanoelectronics, Thermodynamics, Temperature, Electron beam lithography, Electricity, Electric charge, Electron, Nanotechnology


Patterning materials efficiently at the smallest length scales is a longstanding challenge in nanotechnology. Electron-beam lithography (EBL) is the primary method for patterning arbitrary features, but EBL has not reliably provided sub-4 nanometer patterns. The few competing techniques that have achieved this resolution are orders of magnitude slower than EBL. In this work, we employed an aberration-corrected scanning transmission electron microscope for lithography to achieve unprecedented resolution. Here we show aberration-corrected EBL at the one nanometer length scale using poly(methyl methacrylate) (PMMA), and have produced both the smallest isolated feature in any conventional resist (1.7 ± 0.5 nm) and the highest density patterns in PMMA (10.7 nm pitch for negative-tone and 17.5 nm pitch for positive-tone PMMA). We also demonstrate pattern transfer from the resist to semiconductor and metallic materials at the sub-5 nanometer scale. These results indicate that polymer-based nanofabrication can achieve features sizes comparable to the Kuhn length of PMMA and ten times smaller than its radius of gyration. Use of aberration-corrected EBL will increase the resolution, speed, and complexity in nanomaterial fabrication.

Concepts: Electron microscope, Lithography, Scanning tunneling microscope, Photolithography, Orders of magnitude, Nanotechnology, Electron, Electron beam lithography


The current nanofabrication techniques including electron beam lithography provide fabrication resolution in the nanometre range. The major limitation of these techniques is their incapability of arbitrary three-dimensional nanofabrication. This has stimulated the rapid development of far-field three-dimensional optical beam lithography where a laser beam is focused for maskless direct writing. However, the diffraction nature of light is a barrier for achieving nanometre feature and resolution in optical beam lithography. Here we report on three-dimensional optical beam lithography with 9 nm feature size and 52 nm two-line resolution in a newly developed two-photon absorption resin with high mechanical strength. The revealed dependence of the feature size and the two-line resolution confirms that they can reach deep sub-diffraction scale but are limited by the mechanical strength of the new resin. Our result has paved the way towards portable three-dimensional maskless laser direct writing with resolution fully comparable to electron beam lithography.

Concepts: Nonlinear optics, Electromagnetic radiation, Stimulated emission, Electron, Photon, Diffraction, Electron beam lithography, Light


Direct writing utilizing a focused electron beam constitutes an interesting alternative to resist based techniques, as it allows for precise and flexible growth onto any conductive substrate in a single-step process. One important challenge, however, is the identification of appropriate precursors which allow for deposition of the material of choice e.g. for envisaged applications in nano-optics. In this regard the coinage metal silver is of particular interest since it shows a relatively high plasma frequency, and thus, excellent plasmonic properties in the visible range. By utilizing the precursor compound AgO2Me2Bu, direct writing of silver-based nanostructures via local electron beam induced deposition could be realized for the first time. Interestingly, the silver deposition was strongly dependent on electron dose; at low doses of 30 nC/ μm2 a dominant formation of pure silver crystals was observed, while at higher electron doses around 104 nC/μm2 large carbon contents were measured. A scheme for the enhanced silver deposition under low electron fluxes by an electronic activation of precursor dissociation below thermal CVD temperature is proposed and validated using material characterization techniques. Finally, the knowledge gained was employed to fabricate well-defined two-dimensional deposits with maximized silver content approaching 75 at.%, which was achieved by proper adjustment of the deposition parameters. The corresponding deposits consist of plasmonically active silver crystallites and demonstrate a pronounced Raman signal enhancement of the carbonaceous matrix.

Concepts: Dose, Gold, Electron beam lithography, Plasma oscillation, Coin, Electron, Silver, Materials science