Discover the most talked about and latest scientific content & concepts.

Concept: Electrical conductivity


The potential of thermoelectric materials to generate electricity from the waste heat can play a key role in achieving a global sustainable energy future. In order to proceed in this direction, it is essential to have thermoelectric materials that are environmentally friendly and exhibit high figure of merit, ZT. Oxide thermoelectric materials are considered ideal for such applications. High thermoelectric performance has been reported in single crystals of Ca3Co4O9. However, for large scale applications single crystals are not suitable and it is essential to develop high-performance polycrystalline thermoelectric materials. In polycrystalline form, Ca3Co4O9 is known to exhibit much weaker thermoelectric response than in single crystal form. Here, we report the observation of enhanced thermoelectric response in polycrystalline Ca3Co4O9 on doping Tb ions in the material. Polycrystalline Ca3-xTbxCo4O9 (x = 0.0-0.7) samples were prepared by a solid-state reaction technique. Samples were thoroughly characterized using several state of the art techniques including XRD, TEM, SEM and XPS. Temperature dependent Seebeck coefficient, electrical resistivity and thermal conductivity measurements were performed. A record ZT of 0.74 at 800 K was observed for Tb doped Ca3Co4O9 which is the highest value observed till date in any polycrystalline sample of this system.

Concepts: Crystal, Heat, Silicon, Solid, Materials science, Electrical conductivity, Thermoelectric effect, Crystallite


Man-made mineral fibers are produced using inorganic materials and are widely used as thermal and acoustic insulation. These basically include continuous fiberglass filaments, glass wool (fiberglass insulation), stone wool, slag wool and refractory ceramic fibers. Likewise, in the last two decades nanoscale fibers have also been developed, among these being carbon nanotubes with their high electrical conductivity, mechanical resistance and thermal stability. Both man-made mineral fibers and carbon nanotubes have properties that make them inhalable and potentially harmful, which have led to studies to assess their pathogenicity. The aim of this review is to analyze the knowledge that currently exists about the ability of these fibers to produce respiratory diseases.

Concepts: Magnesium, Materials, Electrical conductivity, Glass, Fiberglass, Building insulation materials, Thermal insulation, Mineral wool


Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG) electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs).

Concepts: Electrical conductor, Electroencephalography, Liquid, Electrical conductivity, Electrical engineering, Printed circuit board, Breadboard, Electronic engineering


Carbon nanotubes (CNTs) are often used as conductive fillers in composite materials, but electrical conductivity is limited by the maximum filler concentration that is necessary to maintain composite structures. This paper presents further improvement in electrical conductivity by precipitating gold nanoparticles onto CNTs. In our composites, the concentrations of CNTs and poly (vinyl acetate) were respectively 60 and 10 vol%. Four different gold concentrations, 0, 10, 15, or 20 vol% were used to compare the influence of the gold precipitation on electrical conductivity and thermopower of the composites. The remaining portion was occupied by poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), which de-bundled and stabilized CNTs in water during synthesis processes. The concentrations of gold nanoparticles are below the percolation threshold of similar composites. However, with 15-vol% gold, the electrical conductivity of our composites was as high as ∼6×10(5) S/m, which is at least ∼500% higher than those of similar composites as well as orders of magnitude higher than those of other polymer composites containing CNTs and gold particles. According to our analysis with a variable range hopping model, the high conductivity can be attributed to gold doping on CNT networks. Additionally, the electrical properties of composites made of different types of CNTs were also compared.

Concepts: Nanoparticle, Water, Nanomaterials, Gold, Composite material, Colloidal gold, Electrical conductivity, Carbon fiber


The insulator characteristic of hexagonal boron nitride limits its applications in microelectronics. In this paper, the fluorinated hexagonal boron nitride nanosheets were prepared by doping fluorine into the boron nitride nanosheets exfoliated from the bulk boron nitride in isopropanol via a facile chemical solution method with fluoboric acid; interestingly, these boron nitride nanosheets demonstrate a typical semiconductor characteristic which were studied on a new scanning tunneling microscope-transmission electron microscope holder. Since this property changes from an insulator to a semiconductor of the boron nitride, these nanosheets will be able to extend their applications in designing and fabricating electronic nanodevices.

Concepts: Electron, Electron microscope, Hydrogen, Chemistry, Semiconductor, Electrical conductivity, Boron, Boron nitride


Conducting fibres are essential to the development of e-textiles. We demonstrate a method to make common insulating textile fibres conductive, by coating them with graphene. The resulting fibres display sheet resistance values as low as 600 Ωsq(-1), demonstrating that the high conductivity of graphene is not lost when transferred to textile fibres. An extensive microscopic study of the surface of graphene-coated fibres is presented. We show that this method can be employed to textile fibres of different materials, sizes and shapes, and to different types of graphene. These graphene-based conductive fibres can be used as a platform to build integrated electronic devices directly in textiles.

Concepts: Cotton, Electrical conductivity, Textile, Yarn


Processing and manipulation of highly conductive pristine graphene in large quantities are still major challenges in the practical application of graphene for electric device. In the present study, we report the liquid-phase exfoliation of graphite in toluene using well-defined poly(3-hexylthiophene) (P3HT) to produce a P3HT/graphene composite. We synthesize and use regioregular P3HT with controlled molecular weights as conductive dispersants for graphene. Simple ultrasonication of graphite flakes with the P3HT successfully produces single-layer and few-layer graphene sheets dispersed in toluene. The produced P3HT/graphene composite can be used as conductive graphene ink, indicating that the P3HT/graphene composite has high electrical conductivity owing to the high conductivity of P3HT and graphene. The P3HT/graphene composite also works as an oxidation-resistant and conductive film for a copper substrate, which is due to the high gas-barrier property of graphene.

Concepts: Electricity, Electrical conductor, Aluminium, Copper, Graphite, Graphene, Electrical conductivity, Fullerene


In competitive thermoelectric devices for energy conversion and generation, high-efficiency materials of both n-type and p-type are required. For this, Bi2Te3-based alloys have the best thermoelectric properties in room temperature applications. Partial replacement of tellurium by selenium is expected to introduce new donor states in the band gap, which would alter electrical conductivity and thermopower. We report on the preparation of n-type Bi2(Te1-xSex)3 solid solutions by a straightforward arc-melting technique, yielding nanostructured polycrystalline pellets. X-ray and neutron powder diffraction was used to assess Se inclusion, also indicating that the interactions between quintuple layers constituting this material are weakened upon Se doping, while the covalency of intralayer bonds is augmented. Moreover, scanning electron microscopy shows large surfaces perpendicular to the c crystallographic axis assembled as stacked sheets. Grain boundaries related to this 2D nanostructuration affect the thermal conductivity reducing it below 0.8 Wm(-1)K(-1) at room temperature. Furthermore, Se doping increases the absolute Seebeck coefficient up to -140 μV K(-1) at 400 K, which is also beneficial for improved thermoelectric efficiency.

Concepts: Electron, Crystallography, Semiconductor, Solid, Bismuth telluride, Electrical conductivity, Selenium, Thermoelectric effect


A zeolite (mordenite)-pore-phenol resin composite and a zeolite-pore-shirasu glass composite were fabricated by hot-pressing. Their thermal conductivities were measured by a laser flash method to determine the thermal conductivity of the monolithic zeolite with the proposed mixing rule. The analysis using composites is useful for a zeolite powder with no sinterability to clarify its thermal properties. At a low porosity <20%, the thermal conductivity of the composite was in excellent agreement with the calculated value for the structure with phenol resin or shirasu glass continuous phase. At a higher porosity above 40%, the measured value approached the calculated value for the structure with pore continuous phase. The thermal conductivity of the monolithic mordenite was evaluated to be 3.63 W/mK and 1.70-2.07 W/mK at room temperature for the zeolite-pore-phenol resin composite and the zeolite-pore-shirasu glass composite, respectively. The analyzed thermal conductivities of monolithic mordenite showed a minimum value of 1.23 W/mK at 400 °C and increased to 2.51 W/mK at 800 °C.

Concepts: Heat, Electrical conductivity, Glass transition, Dental composite, Zeolite, Fiberglass, Asphalt concrete, Glass-reinforced plastic


High thermal conductivity is critical for many applications of polymers (for example, packaging of light-emitting diodes), in which heat must be dissipated efficiently to maintain the functionality and reliability of a system. Whereas uniaxially extended chain morphology has been shown to significantly enhance thermal conductivity in individual polymer chains and fibers, bulk polymers with coiled and entangled chains have low thermal conductivities (0.1 to 0.4 W m(-1) K(-1)). We demonstrate that systematic ionization of a weak anionic polyelectrolyte, polyacrylic acid (PAA), resulting in extended and stiffened polymer chains with superior packing, can significantly enhance its thermal conductivity. Cross-plane thermal conductivity in spin-cast amorphous films steadily grows with PAA degree of ionization, reaching up to ~1.2 W m(-1) K(-1), which is on par with that of glass and about six times higher than that of most amorphous polymers, suggesting a new unexplored molecular engineering strategy to achieve high thermal conductivities in amorphous bulk polymers.

Concepts: Polymer, Heat, Chain, Physical chemistry, Polystyrene, Nylon, Thermal conductivity, Electrical conductivity