Discover the most talked about and latest scientific content & concepts.

Concept: Electric power


Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices.

Concepts: Electromagnetism, Electricity, Neurotransmitter, Energy conversion, Coal, Electricity generation, Electrical generator, Electric power


Microbial fuel cell (MFC) technology is a promising technology for electricity production together with simultaneous water treatment. Catalysts play an important role in deciding the MFC performance. In most reports, effect of catalyst - both type and quantity is not optimized. In this paper, synthesis of nanorods of MnO2-catalyst particles for application in Pt-free MFCs is reported. The effect of catalyst loading i.e., weight ratio, with respect to conducting element and binder has been optimized by employing large number of combinations. Using simple theoretical model, it is shown that too high (or low) concentration of catalysts result in loss of MFC performance. The operation of MFC has been investigated using domestic wastewater as source of bio-waste for obtaining real world situation. Maximum power density of ∼61mW/m(2) was obtained when weight ratio of catalyst and conducting species was 1:1. Suitable reasons are given to explain the outcomes.

Concepts: Water, Electrochemistry, Energy development, Fuel cell, Microbial fuel cell, Glossary of fuel cell terms, Electric power, Fuel cells


Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

Concepts: Structure, Gallium arsenide, Solar cell, Germanium, Thin film, Gallium, Solar cells, Electric power


This paper proposes a novel, passive-based anti-islanding method for both inverter and synchronous machine-based distributed generation (DG) units. Unfortunately, when the active/reactive power mismatches are near to zero, majority of the passive anti-islanding methods cannot detect the islanding situation, correctly. This study introduces a new islanding detection method based on exponentially damped signal estimation method. The proposed method uses adaptive identifier method for estimating of the frequency deviation of the point of common coupling (PCC) link as a target signal that can detect the islanding condition with near-zero active power imbalance. Main advantage of the adaptive identifier method over other signal estimation methods is its small sampling window. In this paper, the adaptive identifier based islanding detection method introduces a new detection index entitled decision signal by estimating of oscillation frequency of the PCC frequency and can detect islanding conditions, properly. In islanding conditions, oscillations frequency of PCC frequency reach to zero, thus threshold setting for decision signal is not a tedious job. The non-islanding transient events, which can cause a significant deviation in the PCC frequency are considered in simulations. These events include different types of faults, load changes, capacitor bank switching, and motor starting. Further, for islanding events, the capability of the proposed islanding detection method is verified by near-to-zero active power mismatches.

Concepts: Wave, Wavelength, Sound, Electric power, Switched-mode power supply, Electricity distribution, Distributed generation, Islanding


Highly efficient colored perovskite solar cells that exploit localized surface plasmon resonances in ultrathin subwavelength plasmonic nanoresonators are demonstrated. Localized resonances in ultrathin metal nano-strip optical resonators consisting of an array of metallic subwavelength nanowires on a transparent substrate, fabricated by using low-cost nanoimprint lithography over a large area, lead to a sharp peak in a reflection spectrum for distinctive color generation with angle-insensitive property up to 60°, and simultaneously transmit the complementary spectrum of visible light that can be efficiently harvested by the perovskite solar cells for electric power generation. The plasmonic color filter-integrated perovskite solar cells provide 10.12%, 8.17% and 7.72% of power conversion efficiencies with capabilities of creating vivid reflective red, green and blue colors. The scheme described in this work could be applied to a variety of applications such as power-generating decorations, tandem cells, power-saving wearable devices and energy-efficient reflective display technologies.

Concepts: Electromagnetism, Light, Color, Solar cell, Red, Surface plasmon resonance, Plasmon, Electric power


The present study evaluates the feasibility of increased power generation in microbial fuel cells (MFCs) coupled with acid elutriation fermentation. Raw piggery waste (RPW) and acid elutriation effluents (AEE) of piggery waste were used to generate bioelectricity in single-chambered air-cathode MFCs. RPW-fed MFCs exhibited stable performance after 12-days of operation, generating 540mV of open circuit voltage (OCV). RPW fed-MFCs displayed peak potential and maximal power density (PDmax) of 0.364V and 192mW/m(2) with 980Ω external resistance (Rext), respectively. AEE-fed MFCs documented 818mV of maximum OCV. Furthermore, the peak potential and PDmax of 0.329V and 1553mW/m(2) were generated with 100Ω Rext, respectively. RPW and AEE-fed MFCs exhibited 84% and 93% substrate removal efficiency, respectively. These findings suggest that a two-stage process including acid elutriation reactor asa pre-fermentation and MFCs greatly enhances substrate removal and electricity generation from piggery waste.

Concepts: Bacteria, Enzyme, Water, Coal, Microbial fuel cell, Power station, Electrical generator, Electric power


There is increasing recognition of the vulnerability of electric power systems to drought and the potential for both climate change and a shifting generation mix to alter this vulnerability. Nonetheless, the considerable research in this area has not been synthesized to inform electric utilities with respect to a key factor that influences their decisions about critical infrastructure: financial risk for shareholders. This study addresses this gap in knowledge by developing a systems framework for assessing the financial exposure of utilities to drought, with further consideration of the effects of climate change and a shifting generation mix. We then apply this framework to a major utility in the Southeastern U.S. Results suggest that extreme drought could cause profit shortfalls of more than $100 million if water temperature regulations are strictly enforced. However, even losses of this magnitude would not significantly impact returns for shareholders. This may inadvertently reduce pressure internally at utilities to incorporate drought vulnerability into long term strategic planning, potentially leaving utilities and their customers at greater risk in the future.

Concepts: Risk, Economics, Finance, Infrastructure, Electric power, Public utility, Electricity distribution, Electric utility


Microbial fuel cells (MFCs) are one of the bioelectrochemical systems that exploit microorganisms as biocatalysts to degrade organic matters and recover energy as electric power. Here, we explored how the established electrogenic microbial communities were influenced by three different inoculum sources; anaerobic sludge of the wastewater plant, rice paddy field soil, and coastal lagoon sediment. We periodically characterized both electricity generation with sucrose consumption and 16S rRNA-basis microbial community composition. The electrochemical features of MFCs were slightly different among three inocula, and the lagoon sediment-inoculated MFC showed the highest performance in terms of the treatment time. Meanwhile, although the inoculated microbial communities were highly diverse and quite different, only twelve genera affiliated with δ-Proteobacteria, γ-Proteobacteria, Bacilli, Clostridia/Negativicutes or Bacteroidetes were abundantly enriched in all MFC anode communities. Within them, several fermentative genera were clearly different due to the inocula, while the inocula-specific phylotypes were identified in an electrogenic genus Geobacter. The relative abundances of phylotypes closely-related to Geobacter metallireducens were increased in later stages of all the sucrose-fed MFCs. These results indicate that key microbial members for the functional electrogenic community widely exist in natural ecosystems, but the community members presenting in inoculum sources affected the MFC performances.

Concepts: Archaea, Bacteria, Organism, Microbiology, Species, Population ecology, Paddy field, Electric power


A cogeneration system for simultaneously producing synthetic natural gas (SNG) and electric power from municipal solid waste (MSW) is developed. This process provides a disposal method for MSW that is environmentally sustainable and uses as an alternative energy sources. Rather than converting all of the synthesis gas into end products, in the proposed system the unconverted gas is recovered for power generation in a combined-cycle unit. The overall efficiency of the proposed system is 36.33%. The energy efficiency of this system is approximately 8.7% higher than that of a standalone SNG production system, and 15.02% higher than that of an MSW incineration system. A sensitivity analysis shows that by increasing the H2/CO ratio (α), SNG production and SNG conversion efficiency can be increased, but the overall efficiency does not increase. Increasing the recycling ratio of the unconverted gas (Ru) benefits for the SNG yield up to a value before Ru/(Ru+1)=0.7, and the overall system efficiency reaches its maximum value at Ru/(Ru+1)=0.9. Therefore, partial recycling of the unreacted gas is more efficient up to a point, and higher recycling ratios are less efficient.

Concepts: Hydrocarbon, Waste management, Natural gas, Coal, Peak oil, Energy development, Electricity generation, Electric power


A solid-state thermoelectric device is attractive for diverse technological areas such as cooling, power generation and waste heat recovery with unique advantages of quiet operation, zero hazardous emissions, and long lifetime. With the rapid growth of flexible electronics and miniature sensors, the low-cost flexible thermoelectric energy harvester is highly desired as a potential power supply. Herein, a flexible thermoelectric copper selenide (Cu2 Se) thin film, consisting of earth-abundant elements, is reported. The thin film is fabricated by a low-cost and scalable spin coating process using ink solution with a truly soluble precursor. The Cu2 Se thin film exhibits a power factor of 0.62 mW/(m K(2) ) at 684 K on rigid Al2 O3 substrate and 0.46 mW/(m K(2) ) at 664 K on flexible polyimide substrate, which is much higher than the values obtained from other solution processed Cu2 Se thin films (<0.1 mW/(m K(2) )) and among the highest values reported in all flexible thermoelectric films to date (≈0.5 mW/(m K(2) )). Additionally, the fabricated thin film shows great promise to be integrated with the flexible electronic devices, with negligible performance change after 1000 bending cycles. Together, the study demonstrates a low-cost and scalable pathway to high-performance flexible thin film thermoelectric devices from relatively earth-abundant elements.

Concepts: Electricity, Thin film, Electronics, Thermoelectric effect, Electronic engineering, Thermoelectricity, Electric power, Thermoelectric cooling