Discover the most talked about and latest scientific content & concepts.

Concept: Electric eel


In March 1800, Alexander von Humboldt observed the extraordinary spectacle of native fisherman collecting electric eels (Electrophorus electricus) by “fishing with horses” [von Humboldt A (1807) Ann Phys 25:34-43]. The strategy was to herd horses into a pool containing electric eels, provoking the eels to attack by pressing themselves against the horses while discharging. Once the eels were exhausted, they could be safely collected. This legendary tale of South American adventures helped propel Humboldt to fame and has been recounted and illustrated in many publications, but subsequent investigators have been skeptical, and no similar eel behavior has been reported in more than 200 years. Here I report a defensive eel behavior that supports Humboldt’s account. The behavior consists of an approach and leap out of the water during which the eel presses its chin against a threatening conductor while discharging high-voltage volleys. The effect is to short-circuit the electric organ through the threat, with increasing power diverted to the threat as the eel attains greater height during the leap. Measurement of voltages and current during the behavior, and assessment of the equivalent circuit, reveal the effectiveness of the behavior and the basis for its natural selection.

Concepts: Electricity, Fish, Eel, Electric eel, Electric fish, Alexander von Humboldt, Lisa Germano, Mark Oliver Everett


Alternative hypotheses had been advanced as to the components forming the elongate fin coursing along the ventral margin of much of the body and tail from behind the abdominal region to the posterior margin of the tail in the Electric Eel, Electrophorus electricus. Although the original species description indicated that this fin was a composite of the caudal fin plus the elongate anal fin characteristic of other genera of the Gymnotiformes, subsequent researchers proposed that the posterior region of the fin was formed by the extension of the anal fin posteriorly to the tip of the tail, thereby forming a “false caudal fin.” Examination of ontogenetic series of the genus reveal that Electrophorus possesses a true caudal fin formed of a terminal centrum, hypural plate and a low number of caudal-fin rays. The confluence of the two fins is proposed as an additional autapomorphy for the genus. Under all alternative proposed hypotheses of relationships within the order Gymnotiformes, the presence of a caudal fin in Electrophorus optimized as being independent of the occurence of the morphologically equivalent structure in the Apteronotidae. Possible functional advantages to the presence of a caudal fin in the genus are discussed.

Concepts: Electricity, Species, Fish, Eel, Actinopterygii, Electric eel, Electric fish, Gymnotiformes


In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI) and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT) to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF) requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal’s positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole source localization.

Concepts: Scientific method, Predation, Dimension, Signal, The Signal, Source, Electric eel, Electric fish


Weakly electric fish are unique model systems in neuroethology, that allow experimentalists to non-invasively, access, central nervous system generated spatio-temporal electric patterns of pulses with roles in at least 2 complex and incompletely understood abilities: electrocommunication and electrolocation. Pulse-type electric fish alter their inter pulse intervals (IPIs) according to different behavioral contexts as aggression, hiding and mating. Nevertheless, only a few behavioral studies comparing the influence of different stimuli IPIs in the fish electric response have been conducted. We developed an apparatus that allows real time automatic realistic stimulation and simultaneous recording of electric pulses in freely moving Gymnotus carapo for several days. We detected and recorded pulse timestamps independently of the fish’s position for days. A stimulus fish was mimicked by a dipole electrode that reproduced the voltage time series of real conspecific according to previously recorded timestamp sequences. We characterized fish behavior and the eletrocommunication in 2 conditions: stimulated by IPIs pre-recorded from other fish and random IPI ones. All stimuli pulses had the exact Gymontus carapo waveform. All fish presented a surprisingly long transient exploratory behavior (more than 8 h) when exposed to a new environment in the absence of electrical stimuli. Further, we also show that fish are able to discriminate between real and random stimuli distributions by changing several characteristics of their IPI distribution.

Concepts: Central nervous system, Nervous system, Neurology, Electric eel, Electric fish, Neuroethology, Gymnotiformes, Timestamp


Phenolic lipids were isolated from rye grains, cashew nutshell liquid (CNSL) from Anacardium occidentale, and fruit bodies of Merrulius tremellosus, and their effects on the electric eel acetylcholinesterase activity and conformation were studied. The observed effect distinctly depended on the chemical structure of the phenolic lipids that were available for interaction with the enzyme. All of the tested compounds reduced the activity of acetylcholinesterase. The degree of inhibition varied, showing a correlation with changes in the conformation of the enzyme tested by the intrinsic fluorescence of the Trp residues of the protein.

Concepts: Electricity, Enzyme, Effect, Nitrogen, Chemical compound, Eel, Cashew, Electric eel


Electric eels have been the subject of investigation and curiosity for centuries [1]. They use high voltage to track [2] and control [3] prey, as well as to exhaust prey by causing involuntary fatigue through remote activation of prey muscles [4]. But their most astonishing behavior is the leaping attack, during which eels emerge from the water to directly electrify a threat [5, 6]. This unique defense has reportedly been used against both horses [7] and humans [8]. Yet the dynamics of the circuit that develops when a living animal is contacted and the electrical power transmitted to the target have not been directly investigated. In this study, the electromotive force and circuit resistances that develop during an eel’s leaping behavior were determined. Next, the current that passed through a human subject during the attack was measured. The results allowed each variable in the equivalent circuit to be estimated. Findings can be extrapolated to a range of different eel sizes that might be encountered in the wild. Despite the comparatively small size of the eel used in this study, electrical currents in the target peaked at 40-50 mA, greatly exceeding thresholds for nociceptor activation reported for both humans [9] and horses [10, 11]. No subjective sensation of involuntary tetanus was reported, and aversive sensations were restricted to the affected limb. Results suggest that the main purpose of the leaping attack is to strongly deter potential eel predators by briefly causing intense pain. Apparently a strong offense is the eel’s best defense.

Concepts: Psychology, Electromagnetism, Magnetic field, Electricity, Electric current, Eel, Volt, Electric eel


Electric eels can incapacitate prey with an electric discharge, but the mechanism of the eel’s attack is unknown. Through a series of experiments, I show that eel high-voltage discharges can activate prey motor neurons, and hence muscles, allowing eels to remotely control their target. Eels prevent escape in free-swimming prey using high-frequency volleys to induce immobilizing whole-body muscle contraction (tetanus). Further, when prey are hidden, eels can emit periodic volleys of two or three discharges that cause massive involuntary twitch, revealing the prey’s location and eliciting the full, tetanus-inducing volley. The temporal patterns of eel electrical discharges resemble motor neuron activity that induces fast muscle contraction, suggesting that eel high-voltage volleys have been selected to most efficiently induce involuntary muscle contraction in nearby animals.

Concepts: Spinal cord, Electricity, Muscle, Muscle contraction, Eel, Motor neuron, Alpha motor neuron, Electric eel


The electric eel (Electrophorus electricus) is unusual among electric fishes because it has three pairs of electric organs that serve multiple biological functions: For navigation and communication, it emits continuous pulses of weak electric discharge (<1 V), but for predation and defense, it intermittently emits lethal strong electric discharges (10 to 600 V). We hypothesized that these two electrogenic outputs have different energetic demands reflected by differences in their proteome and phosphoproteome. We report the use of isotope-assisted quantitative mass spectrometry to test this hypothesis. We observed novel phosphorylation sites in sodium transporters and identified a potassium channel with unique differences in protein concentration among the electric organs. In addition, we found transcription factors and protein kinases that show differential abundance in the strong versus weak electric organs. Our findings support the hypothesis that proteomic differences among electric organs underlie differences in energetic needs, reflecting a trade-off between generating weak voltages continuously and strong voltages intermittently.

Concepts: Scientific method, Protein, Signal transduction, Adenosine triphosphate, Fish, Phosphorylation, Proteomics, Electric eel


Pyramidal neurons in the electrosensory lateral line lobe (ELL) of weakly electric fish activate in an environment of time-varying electric fields, which are generated by the fish itself, while how these pyramidal neurons would behave or what kinds of firing patterns these neurons would produce under different electric fields is still unclear. In this research, the firing behaviors of ELL pyramidal neuron under DC and AC electric field stimulus are investigated in a two-compartment neuron model. By means of numerical simulations we show that firing patterns of the model ELL pyramidal neuron are much diverse under different values of DC electric field, and neuronal spike frequency exhibits a monotone decreasing trend with the linearly increased DC fields, moreover, the transition mode between these firing patterns with the variation of DC electric fields demonstrates an explicit periodic route. While for AC electric fields, neuronal firing frequency periodically transforms with the increase of AC frequency, particularly, a special transition pattern (from multi-period bursting to spiking) repeatedly appears with the change of AC frequency. Our simulation results indicate that ELL pyramidal neurons fire dynamically under the time-varying electric fields, the diversity of firing patterns and their periodic transition modes may imply the potential roles of these dynamical firings in the coding strategy of sensory information processing.

Concepts: Neuron, Mathematics, Fundamental physics concepts, Action potential, Cerebral cortex, Pyramidal cell, Electric eel


We investigated the ionic mechanisms that allow dynamic regulation of action potential (AP) amplitude as a means of regulating energetic costs of AP signaling. Weakly electric fish generate an electric organ discharge (EOD) by summing the APs of their electric organ cells (electrocytes). Some electric fish increase AP amplitude during active periods or social interactions and decrease AP amplitude when inactive, regulated by melanocortin peptide hormones. This modulates signal amplitude and conserves energy. The gymnotiform Eigenmannia virescens generates EODs at frequencies that can exceed 500 Hz, which is energetically challenging. We examined how E. virescens meets that challenge. E. virescens electrocytes exhibit a voltage-gated Na(+) current with extremely rapid recovery from inactivation (τ(recov) = 0.3 msec) allowing complete recovery of Na(+) current between APs even in fish with the highest EOD frequencies. Electrocytes also possess an inwardly rectifying K(+) current, and a Na(+)-activated K(+) current (I(KNa)) the latter not yet identified in any gymnotiform species. In vitro application of melanocortins increases electrocyte AP amplitude and the magnitudes of all three currents, but increased I(KNa) is a function of enhanced Na(+) influx. Numerical simulations suggest that changing I(Na) magnitude produces corresponding changes in AP amplitude and that K(Na) channels increase AP energy efficiency (10-30% less Na(+) influx/AP) over model cells with only voltage-gated K(+) channels. These findings suggest the possibility that E. virescens reduces the energetic demands of high-frequency APs through rapidly recovering Na(+) channels and the novel use of K(Na) channels to maximize AP amplitude at a given Na(+) conductance.

Concepts: Energy, Potassium channel, Electric eel, Electric fish, Electric organ, Electric catfish, Ichthyology, Gymnotiformes