SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Eating

331

Accurate monitoring of changes in dietary patterns in response to food policy implementation is challenging. Metabolic profiling allows simultaneous measurement of hundreds of metabolites in urine, the concentrations of which can be affected by food intake. We hypothesised that metabolic profiles of urine samples developed under controlled feeding conditions reflect dietary intake and can be used to model and classify dietary patterns of free-living populations.

Concepts: Nutrition, Eating, Food, Implementation

277

Plastic waste is a distinctive indicator of the world-wide impact of anthropogenic activities. Both macro- and micro-plastics are found in the ocean, but as yet little is known about their ultimate fate and their impact on marine ecosystems. In this study we present the first evidence that microplastics are already becoming integrated into deep-water organisms. By examining organisms that live on the deep-sea floor we show that plastic microfibres are ingested and internalised by members of at least three major phyla with different feeding mechanisms. These results demonstrate that, despite its remote location, the deep sea and its fragile habitats are already being exposed to human waste to the extent that diverse organisms are ingesting microplastics.

Concepts: Eating, Ingestion, Ocean

272

Food consumption is thought to induce sleepiness. However, little is known about how postprandial sleep is regulated. Here, we simultaneously measured sleep and food intake of individual flies and found a transient rise in sleep following meals. Depending on the amount consumed, the effect ranged from slightly arousing to strongly sleep inducing. Postprandial sleep was positively correlated with ingested volume, protein, and salt-but not sucrose-revealing meal property-specific regulation. Silencing of leucokinin receptor (Lkr) neurons specifically reduced sleep induced by protein consumption. Thermogenetic stimulation of leucokinin (Lk) neurons decreased whereas Lk downregulation by RNAi increased postprandial sleep, suggestive of an inhibitory connection in the Lk-Lkr circuit. We further identified a subset of non-leucokininergic cells proximal to Lkr neurons that rhythmically increased postprandial sleep when silenced, suggesting that these cells are cyclically gated inhibitory inputs to Lkr neurons. Together, these findings reveal the dynamic nature of postprandial sleep.

Concepts: DNA, Protein, Nutrition, Eating, Ingestion, Food, Induced demand, Meal

252

The influence of early exposure to allergenic foods on the subsequent development of food allergy remains uncertain.

Concepts: Nutrition, Asthma, Eating, Allergy, Food, Food allergy, Eczema

224

The desire to consume high volumes of fat is thought to originate from an evolutionary pressure to hoard calories, and fat is among the few energy sources that we can store over a longer time period. From an ecological perspective, however, it would be beneficial to detect fat from a distance, before ingesting it. Previous results indicate that humans detect high concentrations of fatty acids by their odor. More important though, would be the ability to detect fat content in real food products. In a series of three sequential experiments, using study populations from different cultures, we demonstrated that individuals are able to reliably detect fat content of food via odors alone. Over all three experiments, results clearly demonstrated that humans were able to detect minute differences between milk samples with varying grades of fat, even when embedded within a milk odor. Moreover, we found no relation between this performance and either BMI or dairy consumption, thereby suggesting that this is not a learned ability or dependent on nutritional traits. We argue that our findings that humans can detect the fat content of food via odors may open up new and innovative future paths towards a general reduction in our fat intake, and future studies should focus on determining the components in milk responsible for this effect.

Concepts: Nutrition, Fatty acid, Eating, Fat, Fatty acid metabolism, Butter, Saturated fat, Carbohydrate

215

BACKGROUND: The pattern of protein intake following exercise may impact whole-body protein turnover and net protein retention. We determined the effects of different protein feeding strategies on protein metabolism in resistance-trained young men. METHODS: Participants were randomly assigned to ingest either 80g of whey protein as 8x10g every 1.5h (PULSE; n=8), 4x20g every 3h (intermediate, INT; n=7), or 2x40g every 6h (BOLUS; n=8) after an acute bout of bilateral knee extension exercise (4x10 repetitions at 80% maximal strength). Whole-body protein turnover (Q), synthesis (S), breakdown (B), and net balance (NB) were measured throughout 12h of recovery by a bolus ingestion of [15N]glycine with urinary [15N]ammonia enrichment as the collected end-product. RESULTS: PULSE Q rates were greater than BOLUS (~19%, P<0.05) with a trend towards being greater than INT (~9%, P=0.08). Rates of S were 32% and 19% greater and rates of B were 51% and 57% greater for PULSE as compared to INT and BOLUS, respectively (P<0.05), with no difference between INT and BOLUS. There were no statistical differences in NB between groups (P=0.23); however, magnitude-based inferential statistics revealed likely small (mean effect+/-90%CI; 0.59+/-0.87) and moderate (0.80+/-0.91) increases in NB for PULSE and INT compared to BOLUS and possible small increase (0.42+/-1.00) for INT vs. PULSE. CONCLUSION: We conclude that the pattern of ingested protein, and not only the total daily amount, can impact whole-body protein metabolism. Individuals aiming to maximize NB would likely benefit from repeated ingestion of moderate amounts of protein (~20g) at regular intervals (~3h) throughout the day.

Concepts: Metabolism, Nutrition, Eating, Ingestion, Coprophagia, Digestive system, Mouth, Whey protein

188

Phthalates and bisphenol A (BPA) are widely used industrial chemicals that may adversely impact human health. Human exposure is ubiquitous and can occur through diet, including consumption of processed or packaged food.

Concepts: Health, Human, Nutrition, Eating, Weight loss, Bisphenol A, Personal life, Fast food

177

BACKGROUND: Slow eating has been associated with enhanced satiation, but also with increased water intake. Therefore, the role of water ingestion in regard to eating rate needs to be discerned. This study examined the influence of eating rate on appetite regulation and energy intake when water intake is controlled. METHODS: In a randomized design, slow and fast eating rates were compared on two occasions, in 30 women (22.7+/-1.2y; BMI=22.4+/-0.4kg/m2) who consumed an ad libitum mixed-macronutrient lunch with water (300 mL). Satiation was examined as the main outcome by measuring energy intake during meals. At designated times, subjects rated hunger, satiety, desire-to-eat, thirst, and meal palatability on visual analogue scales. Paired t-tests were used to compare hypothesis-driven outcomes. Appetite ratings were compared across time points and conditions by repeated measures analysis of variance (ANOVA) using a within-subject model. RESULTS: Energy intake and appetite ratings did not differ between conditions at meal completion. However, subjects rated less hunger and tended to rate lower desire-to-eat and greater satiety at 1 hour following the slow condition. CONCLUSIONS: Results tend to support a role of slow eating on decreased hunger and higher inter-meal satiety when water intake is controlled. However, the lack of significant differences in energy intake under these conditions indicates that water intake may account for the effects of eating rate on appetite regulation.

Concepts: Nutrition, Variance, Water, Eating, Normal distribution, Analysis of variance, Appetite, Food and drink

175

Animals are primarily limited by their capacity to acquire food, yet digestive performance also conditions energy acquisition, and ultimately fitness. Optimal foraging theory predicts that organisms feeding on patchy resources should maximize their food loads within each patch, and should digest these loads quickly to minimize travelling costs between food patches. We tested the prediction of high digestive performance in wandering albatrosses, which can ingest prey of up to 3 kg, and feed on highly dispersed food resources across the southern ocean. GPS-tracking of 40 wandering albatrosses from the Crozet archipelago during the incubation phase confirmed foraging movements of between 475-4705 km, which give birds access to a variety of prey, including fishery wastes. Moreover, using miniaturized, autonomous data recorders placed in the stomach of three birds, we performed the first-ever measurements of gastric pH and temperature in procellariformes. These revealed surprisingly low pH levels (average 1.50±0.13), markedly lower than in other seabirds, and comparable to those of vultures feeding on carrion. Such low stomach pH gives wandering albatrosses a strategic advantage since it allows them a rapid chemical breakdown of ingested food and therefore a rapid digestion. This is useful for feeding on patchy, natural prey, but also on fishery wastes, which might be an important additional food resource for wandering albatrosses.

Concepts: Eating, Food, Stomach, PH, Digestion, Gastric acid, Optimal foraging theory, Foraging

171

Rats prefer energy-rich foods over chow and eat them to excess. The pattern of eating elicited by this diet is unknown. We used the behavioral satiety sequence to classify an eating bout as a meal or snack and compared the eating patterns of rats fed an energy rich cafeteria diet or chow.

Concepts: Nutrition, Eating, Food, Motivation, Dieting, Appetite, Food and drink