Discover the most talked about and latest scientific content & concepts.

Concept: Eastern Gorilla


Grauer’s gorilla (Gorilla beringei graueri), the World’s largest primate, is confined to eastern Democratic Republic of Congo (DRC) and is threatened by civil war and insecurity. During the war, armed groups in mining camps relied on hunting bushmeat, including gorillas. Insecurity and the presence of several militia groups across Grauer’s gorilla’s range made it very difficult to assess their population size. Here we use a novel method that enables rigorous assessment of local community and ranger-collected data on gorilla occupancy to evaluate the impacts of civil war on Grauer’s gorilla, which prior to the war was estimated to number 16,900 individuals. We show that gorilla numbers in their stronghold of Kahuzi-Biega National Park have declined by 87%. Encounter rate data of gorilla nests at 10 sites across its range indicate declines of 82-100% at six of these sites. Spatial occupancy analysis identifies three key areas as the most critical sites for the remaining populations of this ape and that the range of this taxon is around 19,700 km2. We estimate that only 3,800 Grauer’s gorillas remain in the wild, a 77% decline in one generation, justifying its elevation to Critically Endangered status on the IUCN Red List of Threatened Species.

Concepts: Endangered species, Democratic Republic of the Congo, Hominidae, Gorilla, Mountain Gorilla, Eastern Gorilla, IUCN Red List, Eastern Lowland Gorilla


Mountain gorillas are an endangered great ape subspecies and a prominent focus for conservation, yet we know little about their genomic diversity and evolutionary past. We sequenced whole genomes from multiple wild individuals and compared the genomes of all four Gorilla subspecies. We found that the two eastern subspecies have experienced a prolonged population decline over the past 100,000 years, resulting in very low genetic diversity and an increased overall burden of deleterious variation. A further recent decline in the mountain gorilla population has led to extensive inbreeding, such that individuals are typically homozygous at 34% of their sequence, leading to the purging of severely deleterious recessive mutations from the population. We discuss the causes of their decline and the consequences for their future survival.

Concepts: Genetics, Evolution, Primate, Hominidae, Gorilla, Ape, Mountain Gorilla, Eastern Gorilla


Species and populations are disappearing at an alarming rate as a direct result of human activities. Loss of genetic diversity associated with population decline directly impacts species' long-term survival. Therefore, preserving genetic diversity is of considerable conservation importance. However, to assist in conservation efforts, it is important to understand how genetic diversity is spatially distributed and how it changes due to anthropogenic pressures. In this study, we use historical museum and modern faecal samples of two critically endangered eastern gorilla taxa, Grauer’s (Gorilla beringei graueri) and mountain gorillas (Gorilla beringei beringei), to directly infer temporal changes in genetic diversity within the last century. Using over 100 complete mitochondrial genomes, we observe a significant decline in haplotype and nucleotide diversity in Grauer’s gorillas. By including historical samples from now extinct populations we show that this decline can be attributed to the loss of peripheral populations rather than a decrease in genetic diversity within the core range of the species. By directly quantifying genetic changes in the recent past, our study shows that human activities have severely impacted eastern gorilla genetic diversity within only four to five generations. This rapid loss calls for dedicated conservation actions, which should include preservation of the remaining peripheral populations.

Concepts: DNA, Evolution, Hominidae, Gorilla, Mountain Gorilla, Eastern Gorilla, Gorillas, Eastern Lowland Gorilla


On May 14, 2013, a wild, human-habituated, juvenile female mountain gorilla (Gorilla beringei beringei) in Volcanoes National Park, Rwanda was observed utilizing a tool to acquire food. The young gorilla watched an adult male use his hand to collect ants from a hole in the ground, and then quickly withdrew his hand and move away from the hole, shaking his arm to presumably remove biting ants. The juvenile female engaged in similar behavior, withdrawing her hand covered in ants, and shaking her arm vigorously. She then selected a piece of wood approximately 20 cm long and 2 cm wide at one end, 1 cm wide at the other, and proceeded to insert the stick into the hole, withdraw the stick, and then lick ants off of the stick. In contrast to the sizeable body of literature on tool use in wild chimpanzees, this is the first report of tool use for food acquisition by a wild gorilla. Am. J. Primatol. © 2014 Wiley Periodicals, Inc.

Concepts: Human, Hominidae, Gorilla, Mountain Gorilla, Eastern Gorilla, Volcanoes National Park, Gorillas, King Crimson


Infectious diseases pose one of the most significant threats to the survival of great apes in the wild. The critically endangered mountain gorilla (Gorilla beringei beringei) is at high risk for contracting human pathogens because approximately 60% of the population is habituated to humans to support a thriving ecotourism program. Disease surveillance for human and non-human primate pathogens is important for population health and management of protected primate species. Here, we evaluate discarded plants from mountain gorillas and sympatric golden monkeys (Cercopithecus mitis kandti), as a novel biological sample to detect viruses that are shed orally. Discarded plant samples were tested for the presence of mammalian-specific genetic material and two ubiquitous DNA and RNA primate viruses, herpesviruses, and simian foamy virus. We collected discarded plant samples from 383 wild human-habituated mountain gorillas and from 18 habituated golden monkeys. Mammalian-specific genetic material was recovered from all plant species and portions of plant bitten or chewed by gorillas and golden monkeys. Gorilla herpesviral DNA was most consistently recovered from plants in which leafy portions were eaten by gorillas. Simian foamy virus nucleic acid was recovered from plants discarded by golden monkeys, indicating that it is also possible to detect RNA viruses from bitten or chewed plants. Our findings show that discarded plants are a useful non-invasive sampling method for detection of viruses that are shed orally in mountain gorillas, sympatric golden monkeys, and potentially other species. This method of collecting specimens from discarded plants is a new non-invasive sampling protocol that can be combined with collection of feces and urine to evaluate the most common routes of viral shedding in wild primates. Am. J. Primatol. © 2016 Wiley Periodicals, Inc.

Concepts: Human, Virus, Primate, Hominidae, Gorilla, Ape, Mountain Gorilla, Eastern Gorilla


Great apes show considerable diversity in socioecology and life history, but knowledge of their physical growth in natural settings is scarce. We characterized linear body size growth in wild mountain gorillas from Volcanoes National Park, Rwanda, a population distinguished by its extreme folivory and accelerated life histories.

Concepts: Primate, Hominidae, Chimpanzee, Gorilla, Ape, Mountain Gorilla, Eastern Gorilla, Gorillas


Sexually selected infanticide is an important source of infant mortality in many mammalian species. In species with long-term male-female associations, females may benefit from male protection against infanticidal outsiders. We tested whether mountain gorilla (Gorilla beringei beringei) mothers in single and multi-male groups monitored by the Dian Fossey Gorilla Fund’s Karisoke Research Center actively facilitated interactions between their infants and a potentially protective male. We also evaluated the criteria mothers in multi-male groups used to choose a preferred male social partner. In single male groups, where infanticide risk and paternity certainty are high, females with infants <1 year old spent more time near and affiliated more with males than females without young infants. In multi-male groups, where infanticide rates and paternity certainty are lower, mothers with new infants exhibited few behavioral changes toward males. The sole notable change was that females with young infants proportionally increased their time near males they previously spent little time near when compared to males they had previously preferred, perhaps to encourage paternity uncertainty and deter aggression. Rank was a much better predictor of females' social partner choice than paternity. Older infants (2-3 years) in multi-male groups mirrored their mothers' preferences for individual male social partners; 89% spent the most time in close proximity to the male their mother had spent the most time near when they were <1 year old. Observed discrepancies between female behavior in single and multi-male groups likely reflect different levels of postpartum intersexual conflict; in groups where paternity certainty and infanticide risk are both high, male-female interests align and females behave accordingly. This highlights the importance of considering individual and group-level variation when evaluating intersexual conflict across the reproductive cycle.

Concepts: Human, Reproduction, Hominidae, Gorilla, Mountain Gorilla, Eastern Gorilla, Dian Fossey, Gorillas


Amyloid beta (Aβ) and tau pathology have been described in the brains of captive aged great apes, but the natural progression of these age-related pathologies from wild great apes, including the gorilla, is unknown. In our previous study of Western lowland gorillas (Gorilla gorilla gorilla) who were housed in American Zoos and Aquariums-accredited facilities, we found an age-related increase in Aβ-positive plaques and vasculature, tau-positive astrocytes, oligodendrocyte coiled bodies, and neuritic clusters in the neocortex as well as hippocampus in older animals. Here, we demonstrate that aged wild mountain gorillas (Gorilla beringei beringei), who spent their entire lives in their natural habitat, also display an age-related increase in amyloid precursor protein (APP) and/or Aβ-immunoreactive blood vessels and plaques, but very limited tau pathology, in the frontal cortex. These results indicate that Aβ and tau lesions are age-related events that occur in the brain of gorillas living in captivity and in the wild.

Concepts: Brain, Primate, Hominidae, Gorilla, Mountain Gorilla, Eastern Gorilla, Gorillas, Western Lowland Gorilla


Ecological factors have a dramatic effect on tooth wear in primates, although it remains unclear how individual age contributes to functional crown morphology. The aim of this study is to determine how age and individual diet are related to tooth wear in wild mountain gorillas (Gorilla beringei beringei) from Volcanoes National Park, Rwanda.

Concepts: Biodiversity, Primate, Hominidae, Gorilla, Mountain Gorilla, Eastern Gorilla, Volcanoes National Park, Gorillas


Gorillas include separate eastern (Gorilla beringei) and western (Gorilla gorilla) African species that diverged from each other approximately 2 million years ago. Although anatomical, genetic, behavioral, and socioecological differences have been noted among gorilla populations, little is known about variation in their brain structure. This study examines neuroanatomical variation between gorilla species using structural neuroimaging. Postmortem magnetic resonance images were obtained of brains from 18 captive western lowland gorillas (Gorilla gorilla gorilla), 15 wild mountain gorillas (Gorilla beringei beringei), and 3 Grauer’s gorillas (Gorilla beringei graueri) (both wild and captive). Stereologic methods were used to measure volumes of brain structures, including left and right frontal lobe gray and white matter, temporal lobe gray and white matter, parietal and occipital lobes gray and white matter, insular gray matter, hippocampus, striatum, thalamus, each hemisphere and the vermis of the cerebellum, and the external and extreme capsules together with the claustrum. Among the species differences, the volumes of the hippocampus and cerebellum were significantly larger in G. gorilla than G. beringei. These anatomical differences may relate to divergent ecological adaptations of the two species. Specifically, G. gorilla engages in more arboreal locomotion and thus may rely more on cerebellar circuits. In addition, they tend to eat more fruit and have larger home ranges and consequently might depend more on spatial mapping functions of the hippocampus. Am J Phys Anthropol, 2014. © 2014 Wiley Periodicals, Inc.

Concepts: Brain, Human brain, Cerebral cortex, Cerebrum, Hominidae, Gorilla, Eastern Gorilla, Gorillas