Discover the most talked about and latest scientific content & concepts.

Concept: East Africa


Giraffe populations in East Africa have declined in the past thirty years yet there has been limited research on this species. This study had four objectives: i) to provide a baseline population assessment for the two largest populations of Rothschild’s giraffes in Kenya, ii) to assess whether there are differences in population structure between the two enclosed populations, iii) to assess the potential and possible implications of different management practices on enclosed giraffe populations to inform future decision-making, and iv) to add to the availability of information available about giraffes in the wild. I used individual identification to assess the size and structure of the two populations; in Soysambu Conservancy between May 2010 and January 2011, I identified 77 giraffes; in Lake Nakuru National Park between May 2011 and January 2012, I identified 89. Population structure differed significantly between the two sites; Soysambu Conservancy contained a high percentage of juveniles (34%) and subadults (29%) compared to Lake Nakuru NP, which contained fewer juveniles (5%) and subadults (15%). During the time of this study Soysambu Conservancy contained no lions while Lake Nakuru NP contained a high density of lions (30 lions per 100km2). Lions are the main predator of giraffes, and preferential predation on juvenile giraffes has previously been identified in Lake Nakuru NP. My results suggest that high lion density in Lake Nakuru NP may have influenced the structure of the giraffe population by removing juveniles and, consequently, may affect future population growth. I suggest that wildlife managers consider lion densities alongside breeding plans for Endangered species, since the presence of lions appears to influence the population structure of giraffes in enclosed habitats.

Concepts: Africa, Population density, Lion, Giraffe, Kenya, Great Rift Valley, East Africa, Lake Nakuru


The fall armyworm Spodoptera frugiperda is a prime noctuid pest of maize on the American continents where it has remained confined despite occasional interceptions by European quarantine services in recent years. The pest has currently become a new invasive species in West and Central Africa where outbreaks were recorded for the first time in early 2016. The presence of at least two distinct haplotypes within samples collected on maize in Nigeria and São Tomé suggests multiple introductions into the African continent. Implications of this new threat to the maize crop in tropical Africa are briefly discussed.

Concepts: Africa, Continent, Europe, North America, East Africa, Central Africa, Army worm, Spodoptera


The Austronesian settlement of the remote island of Madagascar remains one of the great puzzles of Indo-Pacific prehistory. Although linguistic, ethnographic, and genetic evidence points clearly to a colonization of Madagascar by Austronesian language-speaking people from Island Southeast Asia, decades of archaeological research have failed to locate evidence for a Southeast Asian signature in the island’s early material record. Here, we present new archaeobotanical data that show that Southeast Asian settlers brought Asian crops with them when they settled in Africa. These crops provide the first, to our knowledge, reliable archaeological window into the Southeast Asian colonization of Madagascar. They additionally suggest that initial Southeast Asian settlement in Africa was not limited to Madagascar, but also extended to the Comoros. Archaeobotanical data may support a model of indirect Austronesian colonization of Madagascar from the Comoros and/or elsewhere in eastern Africa.

Concepts: Africa, Southeast Asia, Human migration, Indian Ocean, French language, Madagascar, East Africa, Comoros


The El Niño Southern Oscillation (ENSO) and other climate patterns can have profound impacts on the occurrence of infectious diseases ranging from dengue to cholera. In Africa, El Niño conditions are associated with increased rainfall in East Africa and decreased rainfall in southern Africa, West Africa, and parts of the Sahel. Because of the key role of water supplies in cholera transmission, a relationship between El Niño events and cholera incidence is highly plausible, and previous research has shown a link between ENSO patterns and cholera in Bangladesh. However, there is little systematic evidence for this link in Africa. Using high-resolution mapping techniques, we find that the annual geographic distribution of cholera in Africa from 2000 to 2014 changes dramatically, with the burden shifting to continental East Africa-and away from Madagascar and portions of southern, Central, and West Africa-where almost 50,000 additional cases occur during El Niño years. Cholera incidence during El Niño years was higher in regions of East Africa with increased rainfall, but incidence was also higher in some areas with decreased rainfall, suggesting a complex relationship between rainfall and cholera incidence. Here, we show clear evidence for a shift in the distribution of cholera incidence throughout Africa in El Niño years, likely mediated by El Niño’s impact on local climatic factors. Knowledge of this relationship between cholera and climate patterns coupled with ENSO forecasting could be used to notify countries in Africa when they are likely to see a major shift in their cholera risk.

Concepts: Africa, Climate change, West Africa, Madagascar, Southern Africa, East Africa, Central Africa, Sahel


Water is a fundamental resource, yet its spatiotemporal availability in East Africa is poorly understood. This is the area where most hominin first occurrences are located, and consequently the potential role of water in hominin evolution and dispersal remains unresolved. Here, we show that hundreds of springs currently distributed across East Africa could function as persistent groundwater hydro-refugia through orbital-scale climate cycles. Groundwater buffers climate variability according to spatially variable groundwater response times determined by geology and topography. Using an agent-based model, grounded on the present day landscape, we show that groundwater availability would have been critical to supporting isolated networks of hydro-refugia during dry periods when potable surface water was scarce. This may have facilitated unexpected variations in isolation and dispersal of hominin populations in the past. Our results therefore provide a new environmental framework in which to understand how patterns of taxonomic diversity in hominins may have developed.

Concepts: Time, Human, Africa, Water, Earth, Groundwater, Climate change, East Africa


Early human evolution is characterised by pulsed speciation and dispersal events that cannot be explained fully by global or continental paleoclimate records. We propose that the collated record of ephemeral East African Rift System (EARS) lakes could be a proxy for the regional paleoclimate conditions experienced by early hominins. Here we show that the presence of these lakes is associated with low levels of dust deposition in both West African and Mediterranean records, but is not associated with long-term global cooling and aridification of East Africa. Hominin expansion and diversification seem to be associated with climate pulses characterized by the precession-forced appearance and disappearance of deep EARS lakes. The most profound period for hominin evolution occurs at about 1.9 Ma; with the highest recorded diversity of hominin species, the appearance of Homo (sensu stricto) and major dispersal events out of East Africa into Eurasia. During this period, ephemeral deep-freshwater lakes appeared along the whole length of the EARS, fundamentally changing the local environment. The relationship between the local environment and hominin brain expansion is less clear. The major step-wise expansion in brain size around 1.9 Ma when Homo appeared was coeval with the occurrence of ephemeral deep lakes. Subsequent incremental increases in brain size are associated with dry periods with few if any lakes. Plio-Pleistocene East African climate pulses as evinced by the paleo-lake records seem, therefore, fundamental to hominin speciation, encephalisation and migration.

Concepts: Human, Evolution, Africa, Human evolution, East Africa, Rift, Hominina, Hominini


The origin of the Middle Stone Age (MSA) denotes the transition from a highly persistent mode of stone toolmaking, the Acheulean, to a period of increasing technological innovation and cultural indicators associated with the evolution ofHomo sapiensHere we use40Ar/39Ar and U-series dating to calibrate the chronology of Acheulean- and early MSA-rich sedimentary deposits in the Olorgesailie Basin, South Kenya Rift. We establish the age of late Acheulean tool assemblages from 615 to 499 ka, after which a large technological and faunal transition occurred, with definitive MSA lacking Acheulean elements beginning most likely by ~320 ka, but at least by 305 ka. These results establish the currently oldest repository of MSA in eastern Africa.

Concepts: Africa, Middle Ages, Innovation, Kenya, Nairobi, Human evolution, Stone Age, East Africa


Recent forecasts suggest that African countries must triple their current electricity generation by 2030. Our multicriteria assessment of wind and solar potential for large regions of Africa shows how economically competitive and low-environmental-impact renewable resources can significantly contribute to meeting this demand. We created the Multicriteria Analysis for Planning Renewable Energy (MapRE) framework to map and characterize solar and wind energy zones in 21 countries in the Southern African Power Pool (SAPP) and the Eastern Africa Power Pool (EAPP) and find that potential is several times greater than demand in many countries. Significant fractions of demand can be quickly served with “no-regrets” options-or zones that are low-cost, low-environmental impact, and highly accessible. Because no-regrets options are spatially heterogeneous, international interconnections are necessary to help achieve low-carbon development for the region as a whole, and interconnections that support the best renewable options may differ from those planned for hydropower expansion. Additionally, interconnections and selecting wind sites to match demand reduce the need for SAPP-wide conventional generation capacity by 9.5% in a high-wind scenario, resulting in a 6-20% cost savings, depending on the avoided conventional technology. Strategic selection of low-impact and accessible zones is more cost effective with interconnections compared with solutions without interconnections. Overall results are robust to multiple load growth scenarios. Together, results show that multicriteria site selection and deliberate planning of interconnections may significantly increase the economic and environmental competitiveness of renewable alternatives relative to conventional generation.

Concepts: Energy, Africa, Madagascar, Renewable energy, Wind power, East Africa, Renewable resource, Capacity factor


For the first time, differential attraction of pathogen vectors to vertebrate animals is investigated for novel repellents which when applied to preferred host animals turn them into non-hosts thereby providing a new paradigm for innovative vector control. For effectively controlling tsetse flies (Glossina spp.), vectors of African trypanosomosis, causing nagana, repellents more powerful than plant derived, from a non-host animal the waterbuck, Kobus ellipsiprymnus defassa, have recently been identified. Here we investigate these repellents in the field to protect cattle from nagana by making cattle as unattractive as the buck.

Concepts: African trypanosomiasis, Tsetse fly, East Africa, Host, Hippoboscoidea, Sterile insect technique, Trypanosomiasis, Animal trypanosomiasis


We compiled all credible repeated lion surveys and present time series data for 47 lion (Panthera leo) populations. We used a Bayesian state space model to estimate growth rate-λ for each population and summed these into three regional sets to provide conservation-relevant estimates of trends since 1990. We found a striking geographical pattern: African lion populations are declining everywhere, except in four southern countries (Botswana, Namibia, South Africa, and Zimbabwe). Population models indicate a 67% chance that lions in West and Central Africa decline by one-half, while estimating a 37% chance that lions in East Africa also decline by one-half over two decades. We recommend separate regional assessments of the lion in the World Conservation Union (IUCN) Red List of Threatened Species: already recognized as critically endangered in West Africa, our analysis supports listing as regionally endangered in Central and East Africa and least concern in southern Africa. Almost all lion populations that historically exceeded ∼500 individuals are declining, but lion conservation is successful in southern Africa, in part because of the proliferation of reintroduced lions in small, fenced, intensively managed, and funded reserves. If management budgets for wild lands cannot keep pace with mounting levels of threat, the species may rely increasingly on these southern African areas and may no longer be a flagship species of the once vast natural ecosystems across the rest of the continent.

Concepts: Africa, South Africa, Lion, Southern Africa, Subregion, East Africa, Central Africa, Tiger