### Concept: Earth orbits

#### 164

##### BeiDou Inter-Satellite-Type Bias Evaluation and Calibration for Mixed Receiver Attitude Determination

- OPEN
- Sensors (Basel, Switzerland)
- Published over 7 years ago
- Discuss

The Chinese BeiDou system (BDS), having different types of satellites, is an important addition to the ever growing system of Global Navigation Satellite Systems (GNSS). It consists of Geostationary Earth Orbit (GEO) satellites, Inclined Geosynchronous Satellite Orbit (IGSO) satellites and Medium Earth Orbit (MEO) satellites. This paper investigates the receiver-dependent bias between these satellite types, for which we coined the name “inter-satellite-type bias” (ISTB), and its impact on mixed receiver attitude determination. Assuming different receiver types may have different delays/biases for different satellite types, we model the differential ISTBs among three BeiDou satellite types and investigate their existence and their impact on mixed receiver attitude determination. Our analyses using the real data sets from Curtin’s GNSS array consisting of different types of BeiDou enabled receivers and series of zero-baseline experiments with BeiDou-enabled receivers reveal the existence of non-zero ISTBs between different BeiDou satellite types. We then analyse the impact of these biases on BeiDou-only attitude determination using the constrained (C-)LAMBDA method, which exploits the knowledge of baseline length. Results demonstrate that these biases could seriously affect the integer ambiguity resolution for attitude determination using mixed receiver types and that a priori correction of these biases will dramatically improve the success rate.

#### 0

##### An Optimized Method to Detect BDS Satellites' Orbit Maneuvering and Anomalies in Real-Time

- OPEN
- Sensors (Basel, Switzerland)
- Published almost 3 years ago
- Discuss

The orbital maneuvers of Global Navigation Satellite System (GNSS) Constellations will decrease the performance and accuracy of positioning, navigation, and timing (PNT). Because satellites in the Chinese BeiDou Navigation Satellite System (BDS) are in Geostationary Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO), maneuvers occur more frequently. Also, the precise start moment of the BDS satellites' orbit maneuvering cannot be obtained by common users. This paper presented an improved real-time detecting method for BDS satellites' orbit maneuvering and anomalies with higher timeliness and higher accuracy. The main contributions to this improvement are as follows: (1) instead of the previous two-steps method, a new one-step method with higher accuracy is proposed to determine the start moment and the pseudo random noise code (PRN) of the satellite orbit maneuvering in that time; (2) BDS Medium Earth Orbit (MEO) orbital maneuvers are firstly detected according to the proposed selection strategy for the stations; and (3) the classified non-maneuvering anomalies are detected by a new median robust method using the weak anomaly detection factor and the strong anomaly detection factor. The data from the Multi-GNSS Experiment (MGEX) in 2017 was used for experimental analysis. The experimental results and analysis showed that the start moment of orbital maneuvers and the period of non-maneuver anomalies can be determined more accurately in real-time. When orbital maneuvers and anomalies occur, the proposed method improved the data utilization for 91 and 95 min in 2017.

#### 0

##### High-Precision Ionosphere Monitoring Using Continuous Measurements from BDS GEO Satellites

- OPEN
- Sensors (Basel, Switzerland)
- Published almost 3 years ago
- Discuss

The current constellation of the BeiDou Navigation Satellite System (BDS) consists of five geostationary earth orbit (GEO) satellites, five inclined geosynchronous satellite orbit (IGSO) satellites, and four medium earth orbit (MEO) satellites. The advantage of using GEO satellites to monitor the ionosphereis the almost motionless ionospheric pierce point (IPP), which is analyzed in comparison with the MEO and IGSO satellites. The results from the analysis of the observations using eight tracking sites indicate that the ionospheric total electron content (TEC) sequence derived from each GEO satellite at their respective fixed IPPs is always continuous. The precision of calculated vertical TEC (VTEC) using BDS B1/B2, B1/B3, and B2/B3 dual-frequency combinationsis compared and analyzed. The VTEC12precision based on the B1/B2 dual-frequency measurements using the smoothed code and the raw code combination is 0.69 and 5.54 TECU, respectively, which is slightly higher than VTEC13and much higher than VTEC23. Furthermore, the ionospheric monitoring results of site JFNG in the northern hemisphere, and CUT0 in the southern hemisphere during the period from 1 January to 31 December 2015 are presented and discussed briefly.

#### 0

##### Characteristics of BeiDou Navigation Satellite System Multipath and Its Mitigation Method Based on Kalman Filter and Rauch-Tung-Striebel Smoother

- OPEN
- Sensors (Basel, Switzerland)
- Published almost 3 years ago
- Discuss

Global Navigation Satellite System (GNSS) carrier phase measurement for short baseline meets the requirements of deformation monitoring of large structures. However, the carrier phase multipath effect is the main error source with double difference (DD) processing. There are lots of methods to deal with the multipath errors of Global Position System (GPS) carrier phase data. The BeiDou navigation satellite System (BDS) multipath mitigation is still a research hotspot because the unique constellation design of BDS makes it different to mitigate multipath effects compared to GPS. Multipath error periodically repeats for its strong correlation to geometry of satellites, reflective surface and antenna which is also repetitive. We analyzed the characteristics of orbital periods of BDS satellites which are consistent with multipath repeat periods of corresponding satellites. The results show that the orbital periods and multipath periods for BDS geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites are about one day but the periods of MEO satellites are about seven days. The Kalman filter (KF) and Rauch-Tung-Striebel Smoother (RTSS) was introduced to extract the multipath models from single difference (SD) residuals with traditional sidereal filter (SF). Wavelet filter and Empirical mode decomposition (EMD) were also used to mitigate multipath effects. The experimental results show that the three filters methods all have obvious effect on improvement of baseline accuracy and the performance of KT-RTSS method is slightly better than that of wavelet filter and EMD filter. The baseline vector accuracy on east, north and up (E, N, U) components with KF-RTSS method were improved by 62.8%, 63.6%, 62.5% on day of year 280 and 57.3%, 53.4%, 55.9% on day of year 281, respectively.

#### 0

##### Characteristics of the BDS Carrier Phase Multipath and Its Mitigation Methods in Relative Positioning

- OPEN
- Sensors (Basel, Switzerland)
- Published over 3 years ago
- Discuss

The carrier phase multipath effect is one of the most significant error sources in the precise positioning of BeiDou Navigation Satellite System (BDS). We analyzed the characteristics of BDS multipath, and found the multipath errors of geostationary earth orbit (GEO) satellite signals are systematic, whereas those of inclined geosynchronous orbit (IGSO) or medium earth orbit (MEO) satellites are both systematic and random. The modified multipath mitigation methods, including sidereal filtering algorithm and multipath hemispherical map (MHM) model, were used to improve BDS dynamic deformation monitoring. The results indicate that the sidereal filtering methods can reduce the root mean square (RMS) of positioning errors in the east, north and vertical coordinate directions by 15%, 37%, 25% and 18%, 51%, 27% in the coordinate and observation domains, respectively. By contrast, the MHM method can reduce the RMS by 22%, 52% and 27% on average. In addition, the BDS multipath errors in static baseline solutions are a few centimeters in multipath-rich environments, which is different from that of Global Positioning System (GPS) multipath. Therefore, we add a parameter representing the GEO multipath error in observation equation to the adjustment model to improve the precision of BDS static baseline solutions. And the results show that the modified model can achieve an average precision improvement of 82%, 54% and 68% in the east, north and up coordinate directions, respectively.

#### 0

##### A new analytical solar radiation pressure model for current BeiDou satellites: IGGBSPM

- OPEN
- Scientific reports
- Published about 4 years ago
- Discuss

An analytical solar radiation pressure (SRP) model, IGGBSPM (an abbreviation for Institute of Geodesy and Geophysics BeiDou Solar Pressure Model), has been developed for three BeiDou satellite types, namely, geostationary orbit (GEO), inclined geosynchronous orbit (IGSO) and medium earth orbit (MEO), based on a ray-tracing method. The performance of IGGBSPM was assessed based on numerical integration, SLR residuals and analyses of empirical SRP parameters (except overlap computations). The numerical results show that the integrated orbit resulting from IGGBSPM differs from the precise ephemerides by approximately 5 m and 2 m for GEO and non-GEO satellites, respectively. Moreover, when IGGBSPM is used as an a priori model to enhance the ECOM (5-parameter) model with stochastic pulses, named ECOM + APR, for precise orbit determination, the SLR RMS residual improves by approximately 20-25 percent over the ECOM-only solution during the yaw-steering period and by approximately 40 percent during the yaw-fixed period. For the BeiDou GEO01 satellite, improvements of 18 and 32 percent can be achieved during the out-of-eclipse season and during the eclipse season, respectively. An investigation of the estimated ECOM D0 parameters indicated that the β-angle dependence that is evident in the ECOM-only solution is no longer present in the ECOM + APR solution.

#### 0

##### Analysis of the Bias on the Beidou GEO Multipath Combinations

- OPEN
- Sensors (Basel, Switzerland)
- Published over 4 years ago
- Discuss

The Beidou navigation satellite system is a very important sensor for positioning in the Asia-Pacific region. The Beidou inclined geosynchronous orbit (IGSO) and medium Earth orbit (MEO) satellites have been analysed in some studies previously conducted by other researchers; this paper seeks to gain more insight regarding the geostationary earth orbit (GEO) satellites. Employing correlation analysis, Fourier transformation and wavelet decomposition, we validate whether there is a systematic bias in their multipath combinations. These biases can be observed clearly in satellites C01, C02 and C04 and have a great correlation with time series instead of elevation, being significantly different from those of the Beidou IGSO and MEO satellites. We propose a correction model to mitigate this bias based on its daily periodicity characteristic. After the model has been applied, the performance of the positioning estimations of the eight stations distributed in the Asia-Pacific region is evaluated and compared. The results show that residuals of multipath series behaves random noise; for the single point positioning (SPP) and precise point positioning (PPP) approaches, the positioning accuracy in the upward direction can be improved by 8 cm and 6 mm, respectively, and by 2 cm and 4 mm, respectively, for the horizontal component.

#### 0

##### Analysis of BeiDou Satellite Measurements with Code Multipath and Geometry-Free Ionosphere-Free Combinations

- OPEN
- Sensors (Basel, Switzerland)
- Published almost 5 years ago
- Discuss

Using GNSS observable from some stations in the Asia-Pacific area, the carrier-to-noise ratio (CNR) and multipath combinations of BeiDou Navigation Satellite System (BDS), as well as their variations with time and/or elevation were investigated and compared with those of GPS and Galileo. Provided the same elevation, the CNR of B1 observables is the lowest among the three BDS frequencies, while B3 is the highest. The code multipath combinations of BDS inclined geosynchronous orbit (IGSO) and medium Earth orbit (MEO) satellites are remarkably correlated with elevation, and the systematic “V” shape trends could be eliminated through between-station-differencing or modeling correction. Daily periodicity was found in the geometry-free ionosphere-free (GFIF) combinations of both BDS geostationary Earth orbit (GEO) and IGSO satellites. The variation range of carrier phase GFIF combinations of GEO satellites is -2.0 to 2.0 cm. The periodicity of carrier phase GFIF combination could be significantly mitigated through between-station differencing. Carrier phase GFIF combinations of BDS GEO and IGSO satellites might also contain delays related to satellites. Cross-correlation suggests that the GFIF combinations' time series of some GEO satellites might vary according to their relative geometries with the sun.

#### 0

##### BeiDou Time Transfer with the Standard CGGTTS

- IEEE transactions on ultrasonics, ferroelectrics, and frequency control
- Published almost 5 years ago
- Discuss

The R2CGGTTS software tool developed at the Royal Observatory of Belgium (ROB) to provide clock solutions in the standard CGGTTS (Common GNSS Generic Time Transfer Standard) has been extended to BeiDou Navigation Satellite System (BDS). The BDS includes satellites in three different orbits: Medium Earth Orbit (MEO), Inclined Geosynchronous Satellite Orbit (IGSO) and Geostationary Earth Orbit (GEO). This paper presents first results obtained with this upgraded software, and a comparison between Common View (CV) time transfer solutions obtained with either BDS, or GPS or Galileo. These preliminary results indicate that the BeiDou MEO satellites give time transfer results with a higher noise than the GPS results. This additional noise is shown to be due to some elevation-dependent delay in the BDS code measurements. Some biases were furthermore pointed out between the CV results obtained with the different BeiDou MEO satellites when the receivers used in the two stations are of different make. These biases may reach some nanoseconds, and find most probably their origin in the receiver hardware or firmware. It is shown additionally that using the BeiDou IGSO satellites and the GEO satellites, although increasing the number of observations, especially in the Asia-Pacific region, introduces a significant time transfer noise in the CV results.

#### 0

##### Precise orbit determination of BeiDou constellation based on BETS and MGEX network

- Scientific reports
- Published over 6 years ago
- Discuss

Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved.