Discover the most talked about and latest scientific content & concepts.

Concept: Dromaeosauridae


The Jurassic Yanliao theropods have offered rare glimpses of the early paravian evolution and particularly of bird origins, but, with the exception of the bizarre scansoriopterygids, they have shown similar skeletal and integumentary morphologies. Here we report a distinctive new Yanliao theropod species bearing prominent lacrimal crests, bony ornaments previously known from more basal theropods. It shows longer arm and leg feathers than Anchiornis and tail feathers with asymmetrical vanes forming a tail surface area even larger than that in Archaeopteryx. Nanostructures, interpreted as melanosomes, are morphologically similar to organized, platelet-shaped organelles that produce bright iridescent colours in extant birds. The new species indicates the presence of bony ornaments, feather colour and flight-related features consistent with proposed rapid character evolution and significant diversity in signalling and locomotor strategies near bird origins.

Concepts: Bird, Dinosaur, Feathered dinosaurs, Archaeopteryx, Theropoda, Dromaeosauridae, Troodontidae, Maniraptora


Two skeletons of the large compsognathid Sinocalliopteryx gigas include intact abdominal contents. Both specimens come from the Jianshangou Beds of the lower Yixian Formation (Neocomian), Liaoning, China. The holotype of S. gigas preserves a partial dromaeosaurid leg in the abdominal cavity, here attributed to Sinornithosaurus. A second, newly-discovered specimen preserves the remains of at least two individuals of the primitive avialan, Confuciusornis sanctus, in addition to acid-etched bones from a possible ornithischian. Although it cannot be stated whether such prey items were scavenged or actively hunted, the presence of two Confuciusornis in a grossly similar state of digestion suggests they were consumed in rapid succession. Given the lack of clear arboreal adaptations in Sinocalliopteryx, we suggest it may have been an adept stealth hunter.

Concepts: Cretaceous, Liaoning, Dinosaur, Feathered dinosaurs, Theropoda, Dromaeosauridae, Compsognathidae, Jiufotang Formation


The famous ‘feathered dinosaurs’ from the Early Cretaceous of Liaoning Province, northeastern China, include several dromaeosaurids, which are among the closest relatives of birds. Most of these are small-bodied taxa with long arms and broad wings comprised of vaned feathers, but a single specimen (the holotype of Tianyuraptor) belongs to a much larger individual with reduced forelimbs, which unfortunately lacks any preserved integument. We describe a new specimen of large-bodied, short-armed Liaoning dromaeosaurid, which we designate as a new genus and species, Zhenyuanlong suni. The integument is well preserved and provides the first evidence of feather morphologies and distribution in a short-armed (and probably non-volant) dromaeosaurid, indicating that these rare and aberrant taxa had large wings consisting of pennaceous feathers on the arms and long pennaceous feathers on the tail very similar to their smaller and longer-armed relatives, but potentially lacked vaned feathers on the legs. Zhenyuanlong adds yet more diversity to the Liaoning dromaeosaurid fauna, helps further reveal a distinct short-armed bauplan among dromaeosaurids, and illuminates previously-unrecognized homoplasy that complicates dromaeosaurid phylogeny and suggests that the Liaoning taxa may not have formed their own clade.

Concepts: Bird, Cretaceous, Dinosaur, Feathered dinosaurs, Archaeopteryx, Feather, Dromaeosauridae, Sinosauropteryx


In the two decades since the discovery of feathered dinosaurs [1-3], the range of plumage known from non-avialan theropods has expanded significantly, confirming several features predicted by developmentally informed models of feather evolution [4-10]. However, three-dimensional feather morphology and evolutionary patterns remain difficult to interpret, due to compression in sedimentary rocks [9, 11]. Recent discoveries in Cretaceous amber from Canada, France, Japan, Lebanon, Myanmar, and the United States [12-18] reveal much finer levels of structural detail, but taxonomic placement is uncertain because plumage is rarely associated with identifiable skeletal material [14]. Here we describe the feathered tail of a non-avialan theropod preserved in mid-Cretaceous (∼99 Ma) amber from Kachin State, Myanmar [17], with plumage structure that directly informs the evolutionary developmental pathway of feathers. This specimen provides an opportunity to document pristine feathers in direct association with a putative juvenile coelurosaur, preserving fine morphological details, including the spatial arrangement of follicles and feathers on the body, and micrometer-scale features of the plumage. Many feathers exhibit a short, slender rachis with alternating barbs and a uniform series of contiguous barbules, supporting the developmental hypothesis that barbs already possessed barbules when they fused to form the rachis [19]. Beneath the feathers, carbonized soft tissues offer a glimpse of preservational potential and history for the inclusion; abundant Fe(2+) suggests that vestiges of primary hemoglobin and ferritin remain trapped within the tail. The new finding highlights the unique preservation potential of amber for understanding the morphology and evolution of coelurosaurian integumentary structures.

Concepts: Bird, Dinosaur, Feathered dinosaurs, Archaeopteryx, Feather, Coelurosauria, Dromaeosauridae, Sinosauropteryx


Dakotaraptor steini is a recently described dromaeosaurid dinosaur from the Upper Cretaceous (Maastrichtian) Hell Creek Formation of South Dakota. Included within the D. steini hypodigm are three elements originally identified as furculae, one of which was made part of the holotype specimen. We show that the elements described as D. steini ‘furculae’ are not theropod dinosaur furculae, but are rather trionychid turtle entoplastra referable to cf. Axestemys splendida. The hypodigm of D. steini should be adjusted accordingly.

Concepts: Reptile, Dinosaur, Theropoda, Montana, Dromaeosauridae, Maastrichtian, Tyrannosaurus, Late Cretaceous


Archaeopteryx is an iconic fossil that has long been pivotal for our understanding of the origin of birds. Remains of this important taxon have only been found in the Late Jurassic lithographic limestones of Bavaria, Germany. Twelve skeletal specimens are reported so far. Archaeopteryx was long the only pre-Cretaceous paravian theropod known, but recent discoveries from the Tiaojishan Formation, China, yielded a remarkable diversity of this clade, including the possibly oldest and most basal known clade of avialan, here named Anchiornithidae. However, Archaeopteryx remains the only Jurassic paravian theropod based on diagnostic material reported outside China.

Concepts: Bird, Dinosaur, Archaeopteryx, Theropoda, Dromaeosauridae, Maniraptora, Jurassic, Avialae


From an initial dataset of 53 theropod species, the general relationship between theropod lower-leg length and body mass is identified. After factoring out this allometric relationship, theropod hindlimb proportions are assessed irrespective of body mass. Cursorial-limb-proportion (CLP) scores derived for each of the considered theropod taxa offer a measure of the extent to which a particular species deviates in favour of higher or lower running speeds. Within the same theropod species, these CLP scores are found to be consistent across multiple adult specimens and across disparate ontogenetic stages. Early theropods are found to have low CLP scores, while the coelurosaurian tyrannosauroids and compsognathids are found to have high CLP scores. Among deinonychosaurs, troodontids have consistently high CLP scores, while many dromaeosaur taxa, including Velociraptor and Deinonychus, have low CLP scores. This indicates that dromaeosaurs were not, overall, a particularly cursorily adapted group. Comparisons between the CLP scores of Tyrannosaurus and specimens referred to the controversial genus Nanotyrannus indicate a strong discrepancy in cursorial adaptations, which supports the legitimacy of Nanotyrannus and the previous suggestions of ecological partitioning between Nanotyrannus and the contemporaneous Tyrannosaurus.

Concepts: Biology, Dinosaur, Theropoda, Dromaeosauridae, Troodontidae, Deinonychus, Deinonychosauria, Tyrannosaurus


Maniraptora includes birds and their closest relatives among theropod dinosaurs. During the Cretaceous period, several maniraptoran lineages diverged from the ancestral coelurosaurian bauplan and evolved novel ecomorphologies, including active flight, gigantism, cursoriality and herbivory. Propagation X-ray phase-contrast synchrotron microtomography of a well-preserved maniraptoran from Mongolia, still partially embedded in the rock matrix, revealed a mosaic of features, most of them absent among non-avian maniraptorans but shared by reptilian and avian groups with aquatic or semiaquatic ecologies. This new theropod, Halszkaraptor escuilliei gen. et sp. nov., is related to other enigmatic Late Cretaceous maniraptorans from Mongolia in a novel clade at the root of Dromaeosauridae. This lineage adds an amphibious ecomorphology to those evolved by maniraptorans: it acquired a predatory mode that relied mainly on neck hyperelongation for food procurement, it coupled the obligatory bipedalism of theropods with forelimb proportions that may support a swimming function, and it developed postural adaptations convergent with short-tailed birds.

Concepts: Bird, Dinosaur, Saurischia, Archaeopteryx, Theropoda, Coelurosauria, Dromaeosauridae, Maniraptora


The recent discovery of small paravian theropod dinosaurs with well-preserved feathers in the Middle-Late Jurassic Tiaojishan Formation of Liaoning Province (northeastern China) has challenged the pivotal position of Archaeopteryx, regarded from its discovery to be the most basal bird. Removing Archaeopteryx from the base of Avialae to nest within Deinonychosauria implies that typical bird flight, powered by the forelimbs only, either evolved at least twice, or was subsequently lost or modified in some deinonychosaurians. Here we describe the complete skeleton of a new paravian from the Tiaojishan Formation of Liaoning Province, China. Including this new taxon in a comprehensive phylogenetic analysis for basal Paraves does the following: (1) it recovers it as the basal-most avialan; (2) it confirms the avialan status of Archaeopteryx; (3) it places Troodontidae as the sister-group to Avialae; (4) it supports a single origin of powered flight within Paraves; and (5) it implies that the early diversification of Paraves and Avialae took place in the Middle-Late Jurassic period.

Concepts: Bird, Dinosaur, Archaeopteryx, Theropoda, Dromaeosauridae, Troodontidae, Maniraptora, Avialae


Asymmetrical feathers have been associated with flight capability but are also found in species that do not fly, and their appearance was a major event in feather evolution. Among non-avialan theropods, they are only known in microraptorine dromaeosaurids. Here we report a new troodontid, Jianianhualong tengi gen. et sp. nov., from the Lower Cretaceous Jehol Group of China, that has anatomical features that are transitional between long-armed basal troodontids and derived short-armed ones, shedding new light on troodontid character evolution. It indicates that troodontid feathering is similar to Archaeopteryx in having large arm and leg feathers as well as frond-like tail feathering, confirming that these feathering characteristics were widely present among basal paravians. Most significantly, the taxon has the earliest known asymmetrical troodontid feathers, suggesting that feather asymmetry was ancestral to Paraves. This taxon also displays a mosaic distribution of characters like Sinusonasus, another troodontid with transitional anatomical features.

Concepts: Bird, Dinosaur, Archaeopteryx, Feather, Theropoda, Dromaeosauridae, Troodontidae, Sinosauropteryx