Discover the most talked about and latest scientific content & concepts.

Concept: Drinking water


Drinking water contamination with poly- and perfluoroalkyl substances (PFASs) poses risks to the developmental, immune, metabolic, and endocrine health of consumers. We present a spatial analysis of 2013-2015 national drinking water PFAS concentrations from the U.S. Environmental Protection Agency’s (US EPA) third Unregulated Contaminant Monitoring Rule (UCMR3) program. The number of industrial sites that manufacture or use these compounds, the number of military fire training areas, and the number of wastewater treatment plants are all significant predictors of PFAS detection frequencies and concentrations in public water supplies. Among samples with detectable PFAS levels, each additional military site within a watershed’s eight-digit hydrologic unit is associated with a 20% increase in PFHxS, a 10% increase in both PFHpA and PFOA, and a 35% increase in PFOS. The number of civilian airports with personnel trained in the use of aqueous film-forming foams is significantly associated with the detection of PFASs above the minimal reporting level. We find drinking water supplies for 6 million U.S. residents exceed US EPA’s lifetime health advisory (70 ng/L) for PFOS and PFOA. Lower analytical reporting limits and additional sampling of smaller utilities serving <10000 individuals and private wells would greatly assist in further identifying PFAS contamination sources.

Concepts: Water, Water pollution, Sewage treatment, United States Environmental Protection Agency, Drinking water, Stormwater, Safe Drinking Water Act, Environmental protection


Bath toys pose an interesting link between flexible plastic materials, potable water, external microbial and nutrient contamination, and potentially vulnerable end-users. Here, we characterized biofilm communities inside 19 bath toys used under real conditions. In addition, some determinants for biofilm formation were assessed, using six identical bath toys under controlled conditions with either clean water prior to bathing or dirty water after bathing. All examined bath toys revealed notable biofilms on their inner surface, with average total bacterial numbers of 5.5 × 106 cells/cm2(clean water controls), 9.5 × 106 cells/cm2(real bath toys), and 7.3 × 107 cells/cm2(dirty water controls). Bacterial community compositions were diverse, showing many rare taxa in real bath toys and rather distinct communities in control bath toys, with a noticeable difference between clean and dirty water control biofilms. Fungi were identified in 58% of all real bath toys and in all dirty water control toys. Based on the comparison of clean water and dirty water control bath toys, we argue that bath toy biofilms are influenced by (1) the organic carbon leaching from the flexible plastic material, (2) the chemical and biological tap water quality, (3) additional nutrients from care products and human body fluids in the bath water, as well as, (4) additional bacteria from dirt and/or the end-users' microbiome. The present study gives a detailed characterization of bath toy biofilms and a better understanding of determinants for biofilm formation and development in systems comprising plastic materials in contact with potable water.

Concepts: Bacteria, Fungus, Plastic, Biofilm, Drinking water, Tap water


BACKGROUND: Urban slums in developing countries that are not recognized by the government often lack legal access to municipal water supplies. This results in the creation of insecure “informal” water distribution systems (i.e., community-run or private systems outside of the government’s purview) that may increase water-borne disease risk. We evaluate an informal water distribution system in a slum in Mumbai, India using commonly accepted health and social equity indicators. We also identify predictors of bacterial contamination of drinking water using logistic regression analysis. METHODS: Data were collected through two studies: the 2008 Baseline Needs Assessment survey of 959 households and the 2011 Seasonal Water Assessment, in which 229 samples were collected for water quality testing over three seasons. Water samples were collected in each season from the following points along the distribution system: motors that directly tap the municipal supply (i.e., “point-of-source” water), hoses going to slum lanes, and storage and drinking water containers from 21 households. RESULTS: Depending on season, households spend an average of 52 to 206 times more than the standard municipal charge of Indian rupees 2.25 (US dollars 0.04) per 1000 liters for water, and, in some seasons, 95% use less than the WHO-recommended minimum of 50 liters per capita per day. During the monsoon season, 50% of point-of-source water samples were contaminated. Despite a lack of point-of-source water contamination in other seasons, stored drinking water was contaminated in all seasons, with rates as high as 43% for E. coli and 76% for coliform bacteria. In the multivariate logistic regression analysis, monsoon and summer seasons were associated with significantly increased odds of drinking water contamination. CONCLUSIONS: Our findings reveal severe deficiencies in water-related health and social equity indicators. All bacterial contamination of drinking water occurred due to post-source contamination during storage in the household, except during the monsoon season, when there was some point-of-source water contamination. This suggests that safe storage and household water treatment interventions may improve water quality in slums. Problems of exorbitant expense, inadequate quantity, and poor point-of-source quality can only be remedied by providing unrecognized slums with equitable access to municipal water supplies.

Concepts: Water, Water pollution, Water quality, Drinking water, Waterborne diseases, Water treatment, Water supply, Water supply network


Abstract. In developing countries, safe piped drinking water is generally unavailable, and bottled water is unaffordable for most people. Purchasing drinking water from community-scale decentralized water treatment and refill kiosks (referred to as isi ulang depots in Indonesia) is becoming a common alternative. This study investigates the association between diarrhea risk and community-scale water treatment and refill kiosk. We monitored daily diarrhea status and water source for 1,000 children 1-4 years of age in Jakarta, Indonesia, for up to 5 months. Among children in an urban slum, rate of diarrhea/1,000 child-days varied significantly by primary water source: 8.13 for tap water, 3.60 for bottled water, and 3.97 for water kiosks. In multivariable Poisson regression analysis, diarrhea risk remained significantly lower among water kiosk users (adjusted rate ratio [RR] = 0.49, 95% confidence interval [CI] = 0.29-0.83) and bottled water users (adjusted RR = 0.45, 95% CI = 0.21-0.97), compared with tap water users. In a peri-urban area, where few people purchased from water kiosk (N = 28, 6% of total population), diarrhea rates were lower overall: 2.44 for well water, 1.90 for bottled water, and 2.54 for water kiosks. There were no significant differences in diarrhea risk for water kiosk users or bottled water users compared with well water users. Purchasing water from low-cost water kiosks is associated with a reduction in diarrhea risk similar to that found for bottled water.

Concepts: Regression analysis, Water purification, Prediction interval, Bottled water, Water quality, Drinking water, Poisson regression, Tap water


Opportunistic premise plumbing pathogens are responsible for a significant number of infections whose origin has been traced to drinking water. These opportunistic pathogens represent an emerging water borne disease problem with a major economic cost of at least $1 billion annually. The common features of this group of waterborne pathogens include: disinfectant-resistance, pipe surface adherence and biofilm formation, growth in amoebae, growth on low organic concentrations, and growth at low oxygen levels. Their emergence is due to the fact that conditions resulting from drinking water treatment select for them. As such, there is a need for novel approaches to reduce exposure to these pathogens. In addition to much-needed research, controls to reduce numbers and human exposure can be instituted independently by utilities and homeowners and hospital- and building-operators.

Concepts: Bacteria, Opportunistic infection, Water pollution, Pathogen, Plumbing, Drinking water, Waterborne diseases, Water treatment


Coinciding with major changes to its municipal water system, Flint, MI, endured Legionnaires' disease outbreaks in 2014 and 2015. By sampling premise plumbing in Flint in the fall of 2016, we found that 12% of homes harbored legionellae, a frequency similar to that in residences in neighboring areas. To evaluate the genetic diversity of Legionella pneumophila in Southeast Michigan, we determined the sequence type (ST) and serogroup (SG) of the 18 residential isolates from Flint and Detroit, MI, and the 33 clinical isolates submitted by hospitals in three area counties in 2013 to 2016. Common to one environmental and four clinical samples were strains of L. pneumophila SG1 and ST1, the most prevalent ST worldwide. Among the Flint premise plumbing isolates, 14 of 16 strains were of ST367 and ST461, two closely related SG6 strain types isolated previously from patients and corresponding environmental samples. Each of the representative SG1 clinical strains and SG6 environmental isolates from Southeast Michigan infected and survived within macrophage cultures at least as well as a virulent laboratory strain, as judged by microscopy and by enumerating CFU. Likewise, 72 h after infection, the yield of viable-cell counts increased >100-fold for each of the representative SG1 clinical isolates, Flint premise plumbing SG6 ST367 and -461 isolates, and two Detroit residential isolates. We verified by immunostaining that SG1-specific antibody does not cross-react with the SG6 L. pneumophila environmental strains. Because the widely used urinary antigen diagnostic test does not readily detect non-SG1 L. pneumophila, Legionnaires' disease caused by SG6 L. pneumophila is likely underreported worldwide.IMPORTANCEL. pneumophila is the leading cause of disease outbreaks associated with drinking water in the United States. Compared to what is known of the established risks of colonization within hospitals and hotels, relatively little is known about residential exposure to L. pneumophila One year after two outbreaks of Legionnaires' disease in Genesee County, MI, that coincided with damage to the Flint municipal water system, our multidisciplinary team launched an environmental surveillance and laboratory research campaign aimed at informing risk management strategies to provide safe public water supplies. The most prevalent L. pneumophila strains isolated from residential plumbing were closely related strains of SG6. In laboratory tests of virulence, the SG6 environmental isolates resembled SG1 clinical strains, yet they are not readily detected by the common diagnostic urinary antigen test, which is specific for SG1. Therefore, our study complements the existing epidemiological literature indicating that Legionnaires' disease due to non-SG1 strains is underreported around the globe.

Concepts: Epidemiology, Water, Legionellosis, Legionella, Drinking water, Infrastructure, Michigan, Water supply network


We analyzed differences in pediatric elevated blood lead level incidence before and after Flint, Michigan, introduced a more corrosive water source into an aging water system without adequate corrosion control.

Concepts: Water resources, Drinking water, Water supply, Corrosion, Water crisis, Lead poisoning, Blood lead level, Deficit irrigation


The WHO Consensus Document on the epidemiology of the SARS epidemic in 2003, included a report on a concentrated outbreak in one Hong Kong housing block which was considered a ‘super-spreading event’. The WHO report conjectured that the sanitary plumbing system was one transmission route for the virus. Empty U-traps allowed the aerosolised virus to enter households from the sewerage system. No biological evidence was presented. This research reports evidence that pathogens can be aerosolised and transported on airstreams within sanitary plumbing systems and enter buildings via empty U-traps. A sanitary plumbing system was built, representing two floors of a building, with simulated toilet flushes on the lower floor and a sterile chamber with extractor fan on the floor above. Cultures of a model organism, Pseudomonas putida at 106-109 cfu ml-1 in 0·85% NaCl were flushed into the system in volumes of 6 to 20 litres to represent single or multiple toilet flushes. Air and surface samples were cultured on agar plates and assessed qualitatively and semi-quantitatively. Flushing from a toilet into a sanitary plumbing system generated enough turbulence to aerosolise pathogens. Typical sanitary plumbing system airflows (between 20-30 ls-1) were sufficient to carry aerosolised pathogens between different floors of a building. Empty U-traps allowed aerosolised pathogens to enter the chamber, encouraging cross-transmission. All parts of the system were found to be contaminated post-flush. Empty U-traps have been observed in many buildings and a risk assessment indicates the potential for high risk cross-transmission under defect conditions in buildings with high pathogen loading such as hospitals. Under defective conditions (which are not uncommon) aerosolised pathogens can be carried on the airflows within sanitary plumbing systems. Our findings show that greater consideration should be given to this mode of pathogen transmission.

Concepts: Bacteria, Pneumonia, Pathogen, Flushing, Hygiene, Drinking water, Hong Kong, Storey


BACKGROUND: Few studies have examined water consumption patterns among US children. Additionally, recent data on total water consumption as it relates to the Dietary Reference Intakes (DRI) are lacking. This study evaluated the consumption of plain water (tap and bottled) and other beverages among US children by age group, gender, income-to-poverty ratio, and race/ethnicity. Comparisons were also made to DRI values for water consumption from all sources. METHODS: Data from two non-consecutive 24-hour recalls from 3 cycles of NHANES (2005–2006, 2007–2008 and 2009–2010) was used to assess water and beverage consumption among 4,766 children age 4-13y. Beverages were classified into 9 groups: water (tap and bottled), plain and flavored milk, 100% fruit juice, soda/soft drinks (regular and diet), fruit drinks, sports drinks, coffee, tea, and energy drinks. Total water intakes from plain water, beverages, and food were compared to DRIs for the US. Total water volume per 1,000 kcal was also examined. RESULTS: Water and other beverages contributed 70-75% of dietary water, with 25-30% provided by moisture in foods, depending on age. Plain water, tap and bottled, contributed 25-30% of total dietary water. In general, tap water represented 60% of drinking water volume whereas bottled water represented 40%. Non-Hispanic white children consumed the most tap water, whereas Mexican-American children consumed the most bottled water. Plain water consumption (bottled and tap) tended to be associated with higher incomes. No group of US children came close to satisfying the DRIs for water. At least 75% of children 4-8y, 87% of girls 9-13y, and 85% of boys 9-13y did not meet DRIs for total water intake. Water volume per 1,000 kcal, another criterion of adequate hydration, was 0.85-0.95 L/1,000 kcal, short of the desirable levels of 1.0-1.5 L/1,000 kcal. CONCLUSIONS: Water intakes at below-recommended levels may be a cause for concern. Data on water and beverage intake for the population and among socio-demographic group may provide useful information to target interventions for increasing water intake among children.

Concepts: Water, Coffee, Bottled water, Drinking water, Drink, Water supply network, Drinking, Kefir


During April 25, 2014-October 15, 2015, approximately 99,000 residents of Flint, Michigan, were affected by changes in drinking water quality after their water source was switched from the Detroit Water Authority (DWA), sourced from Lake Huron, to the Flint Water System (FWS), sourced from the Flint River.* Because corrosion control was not used at the FWS water treatment plant, the levels of lead in Flint tap water increased over time. Adverse health effects are associated with lead exposure (1). On January 2, 2015, a water advisory was issued because of detection of high levels of trihalomethanes, byproducts of disinfectants.(†)(,)(§) Studies conducted by local and national investigators detected an increase in the prevalence of blood lead levels (BLLs) ≥5 µg/dL (the CDC reference level) among children aged <5 years living in Flint (2) and an increase in water lead levels after the water source switch (3). On October 16, 2015, the Flint water source was switched back to DWA, and residents were instructed to use filtered tap water for cooking and drinking. During that time, pregnant and breastfeeding women and children aged <6 years were advised to consume bottled water.(¶) To assess the impact on BLLs of consuming contaminated drinking water, CDC examined the distribution of BLLs ≥5 µg/dL among children aged <6 years before, during, and after the switch in water source. This analysis enabled determination of whether the odds of having BLLs ≥5 µg/dL before the switch differed from the odds during the switch to FWS (before and after the January 2, 2015, water advisory was issued), and after the switch back to DWA. Overall, among 9,422 blood lead tests in children aged <6 years, 284 (3.0%) BLLs were ≥5 µg/dL during April 25, 2013-March 16, 2016. The adjusted probability of having BLLs ≥5 µg/dL was 46% higher during the period after the switch from DWA to FWS (and before the January 2, 2015, water advisory) than during the period before the water switch to FWS. Although unrelated to lead in the water, the water advisory likely reduced tap water consumption and increased consumption of bottled water. Characterizing exposure to lead contaminated drinking water among children aged <6 years living in Flint can help guide appropriate interventions.

Concepts: Water, Water purification, Water pollution, Water quality, Drinking water, Waterborne diseases, Lead poisoning, Tap water