Discover the most talked about and latest scientific content & concepts.

Concept: Dopamine


This review, one of a series of articles, tries to make sense of optogenetics, a recently developed technology that can be used to control the activity of genetically defined neurons with light. Cells are first genetically engineered to express a light-sensitive opsin, which is typically an ion channel, pump, or G protein-coupled receptor. When engineered cells are then illuminated with light of the correct frequency, opsin-bound retinal undergoes a conformational change that leads to channel opening or pump activation, cell depolarization or hyperpolarization, and neural activation or silencing. Since the advent of optogenetics many different opsin variants have been discovered or engineered, and it is now possible to stimulate or inhibit neuronal activity or intracellular signaling pathways on fast or slow timescales with a variety of different wavelengths of light. Optogenetics has been successfully employed to enhance our understanding of the neural circuit dysfunction underlying mood disorders, addiction, and Parkinson’s disease, and has enabled us to achieve a better understanding of the neural circuits mediating normal behavior. It has revolutionized the field of neuroscience, and has enabled a new generation of experiments that probe the causal roles of specific neural circuit components.

Concepts: Neurotransmitter, Dopamine, Membrane potential, DNA, Action potential, Cell membrane, Nervous system, Signal transduction


Anecdotally, both acute and chronic cannabis use have been associated with apathy, amotivation, and other reward processing deficits. To date, empirical support for these effects is limited, and no previous studies have assessed both acute effects of Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), as well as associations with cannabis dependence.

Concepts: Cannabis sativa, Dopamine, Cannabinoid receptor, Cannabinoid, Tetrahydrocannabinol, Cannabidiol, Cannabis


An aversion to harming others is a core component of human morality and is disturbed in antisocial behavior [1-4]. Deficient harm aversion may underlie instrumental and reactive aggression, which both feature in psychopathy [5]. Past work has highlighted monoaminergic influences on aggression [6-11], but a mechanistic account of how monoamines regulate antisocial motives remains elusive. We previously observed that most people show a greater aversion to inflicting pain on others than themselves [12]. Here, we investigated whether this hyperaltruistic disposition is susceptible to monoaminergic control. We observed dissociable effects of the serotonin reuptake inhibitor citalopram and the dopamine precursor levodopa on decisions to inflict pain on oneself and others for financial gain. Computational models of choice behavior showed that citalopram increased harm aversion for both self and others, while levodopa reduced hyperaltruism. The effects of citalopram were stronger than those of levodopa. Crucially, neither drug influenced the physical perception of pain or other components of choice such as motor impulsivity or loss aversion [13, 14], suggesting a direct and specific influence of serotonin and dopamine on the valuation of harm. We also found evidence for dose dependency of these effects. Finally, the drugs had dissociable effects on response times, with citalopram enhancing behavioral inhibition and levodopa reducing slowing related to being responsible for another’s fate. These distinct roles of serotonin and dopamine in modulating moral behavior have implications for potential treatments of social dysfunction that is a common feature as well as a risk factor for many psychiatric disorders.

Concepts: Reuptake inhibitor, Antisocial personality disorder, Morality, Serotonin, Mental disorder, Dopamine, Selective serotonin reuptake inhibitor, Neurotransmitter


Sleep control is ascribed to a two-process model, a widely accepted concept that posits homoeostatic drive and a circadian process as the major sleep-regulating factors. Cognitive and emotional factors also influence sleep-wake behaviour; however, the precise circuit mechanisms underlying their effects on sleep control are unknown. Previous studies suggest that adenosine has a role affecting behavioural arousal in the nucleus accumbens (NAc), a brain area critical for reinforcement and reward. Here, we show that chemogenetic or optogenetic activation of excitatory adenosine A2A receptor-expressing indirect pathway neurons in the core region of the NAc strongly induces slow-wave sleep. Chemogenetic inhibition of the NAc indirect pathway neurons prevents the sleep induction, but does not affect the homoeostatic sleep rebound. In addition, motivational stimuli inhibit the activity of ventral pallidum-projecting NAc indirect pathway neurons and suppress sleep. Our findings reveal a prominent contribution of this indirect pathway to sleep control associated with motivation.In addition to circadian and homoeostatic drives, motivational levels influence sleep-wake cycles. Here the authors demonstrate that adenosine receptor-expressing neurons in the nucleus accumbens core that project to the ventral pallidum are inhibited by motivational stimuli and are causally involved in the control of slow-wave sleep.

Concepts: Ventral tegmental area, Mesolimbic pathway, Substantia nigra, Nucleus accumbens, Striatum, Basal ganglia, Globus pallidus, Dopamine


Functional brain networks demonstrate significant temporal variability and dynamic reconfiguration even in the resting state. Currently, most studies investigate temporal variability of brain networks at the scale of single (micro) or whole-brain (macro) connectivity. However, the mechanism underlying time-varying properties remains unclear, as the coupling between brain network variability and neural activity is not readily apparent when analysed at either micro or macroscales. We propose an intermediate (meso) scale analysis and characterize temporal variability of the functional architecture associated with a particular region. This yields a topography of variability that reflects the whole-brain and, most importantly, creates an analytical framework to establish the fundamental relationship between variability of regional functional architecture and its neural activity or structural connectivity. We find that temporal variability reflects the dynamical reconfiguration of a brain region into distinct functional modules at different times and may be indicative of brain flexibility and adaptability. Primary and unimodal sensory-motor cortices demonstrate low temporal variability, while transmodal areas, including heteromodal association areas and limbic system, demonstrate the high variability. In particular, regions with highest variability such as hippocampus/parahippocampus, inferior and middle temporal gyrus, olfactory gyrus and caudate are all related to learning, suggesting that the temporal variability may indicate the level of brain adaptability. With simultaneously recorded electroencephalography/functional magnetic resonance imaging and functional magnetic resonance imaging/diffusion tensor imaging data, we also find that variability of regional functional architecture is modulated by local blood oxygen level-dependent activity and α-band oscillation, and is governed by the ratio of intra- to inter-community structural connectivity. Application of the mesoscale variability measure to multicentre datasets of three mental disorders and matched controls involving 1180 subjects reveals that those regions demonstrating extreme, i.e. highest/lowest variability in controls are most liable to change in mental disorders. Specifically, we draw attention to the identification of diametrically opposing patterns of variability changes between schizophrenia and attention deficit hyperactivity disorder/autism. Regions of the default-mode network demonstrate lower variability in patients with schizophrenia, but high variability in patients with autism/attention deficit hyperactivity disorder, compared with respective controls. In contrast, subcortical regions, especially the thalamus, show higher variability in schizophrenia patients, but lower variability in patients with attention deficit hyperactivity disorder. The changes in variability of these regions are also closely related to symptom scores. Our work provides insights into the dynamic organization of the resting brain and how it changes in brain disorders. The nodal variability measure may also be potentially useful as a predictor for learning and neural rehabilitation.

Concepts: Cerebrum, Dopamine, Hyperactivity, Attention, Hippocampus, Cerebral cortex, Magnetic resonance imaging, Attention-deficit hyperactivity disorder


Excess sugar consumption has been shown to contribute directly to weight gain, thus contributing to the growing worldwide obesity epidemic. Interestingly, increased sugar consumption has been shown to repeatedly elevate dopamine levels in the nucleus accumbens (NAc), in the mesolimbic reward pathway of the brain similar to many drugs of abuse. We report that varenicline, an FDA-approved nicotinic acetylcholine receptor (nAChR) partial agonist that modulates dopamine in the mesolimbic reward pathway of the brain, significantly reduces sucrose consumption, especially in a long-term consumption paradigm. Similar results were observed with other nAChR drugs, namely mecamylamine and cytisine. Furthermore, we show that long-term sucrose consumption increases α4β2 * and decreases α6β2* nAChRs in the nucleus accumbens, a key brain region associated with reward. Taken together, our results suggest that nAChR drugs such as varenicline may represent a novel treatment strategy for reducing sugar consumption.

Concepts: Ventral tegmental area, Muscarinic acetylcholine receptor, Nicotine, Neurotransmitter, Mesolimbic pathway, Acetylcholine, Dopamine, Nicotinic acetylcholine receptor


The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca(2+)-dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2(-/-) mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2(-/-) mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the I(A) potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive-delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse.

Concepts: Striatum, Mesolimbic pathway, Nucleus accumbens, Drug addiction, Addiction, Ventral tegmental area, Reward system, Dopamine


Brain dopamine dysfunction in attention deficit/hyperactivity disorder (ADHD) could explain why stimulant medications, which increase dopamine signaling, are therapeutically beneficial. However while the acute increases in dopamine induced by stimulant medications have been associated with symptom improvement in ADHD the chronic effects have not been investigated.

Concepts: Dopaminergic, Amphetamine, Dopamine receptor, Stimulant, Methylphenidate, Hyperactivity, Dopamine, Attention-deficit hyperactivity disorder


Dopamine has a central role in motivation and reward. Dopaminergic neurons in the ventral tegmental area (VTA) signal the discrepancy between expected and actual rewards (that is, reward prediction error), but how they compute such signals is unknown. We recorded the activity of VTA neurons while mice associated different odour cues with appetitive and aversive outcomes. We found three types of neuron based on responses to odours and outcomes: approximately half of the neurons (type I, 52%) showed phasic excitation after reward-predicting odours and rewards in a manner consistent with reward prediction error coding; the other half of neurons showed persistent activity during the delay between odour and outcome that was modulated positively (type II, 31%) or negatively (type III, 18%) by the value of outcomes. Whereas the activity of type I neurons was sensitive to actual outcomes (that is, when the reward was delivered as expected compared to when it was unexpectedly omitted), the activity of type II and type III neurons was determined predominantly by reward-predicting odours. We ‘tagged’ dopaminergic and GABAergic neurons with the light-sensitive protein channelrhodopsin-2 and identified them based on their responses to optical stimulation while recording. All identified dopaminergic neurons were of type I and all GABAergic neurons were of type II. These results show that VTA GABAergic neurons signal expected reward, a key variable for dopaminergic neurons to calculate reward prediction error.

Concepts: Neuron, Mesolimbic pathway, American films, Game theory, Ventral tegmental area, Reward system, Nervous system, Dopamine


In advanced stages of Parkinson’s disease, serotonergic terminals take up l-DOPA and convert it to dopamine. Abnormally released dopamine may participate in the development of l-DOPA-induced dyskinesias. Simultaneous activation of 5-HT1A and 5-HT1B receptors effectively blocks l-DOPA-induced dyskinesias in animal models of dopamine depletion, justifying a clinical study with eltoprazine, a 5-HT1A/B receptor agonist, against l-DOPA-induced dyskinesias in patients with Parkinson’s disease. A double-blind, randomized, placebo-controlled and dose-finding phase I/IIa study was conducted. Single oral treatment with placebo or eltoprazine, at 2.5, 5 and 7.5 mg, was tested in combination with a suprathreshold dose of l-DOPA (Sinemet®) in 22 patients with Parkinson’s disease (16 male/six female; 66.6 ± 8.8 years old) with l-DOPA-induced dyskinesias. A Wilcoxon Signed Ranked Test was used to compare each eltoprazine dose level to paired randomized placebo on the prespecified primary efficacy variables; area under the curve scores on Clinical Dyskinesia Rating Scale for 3 h post-dose and maximum change of Unified Parkinson’s Disease Rating Scale part III for 3 h post-dose. Secondary objectives included effects on maximum Clinical Dyskinesia Rating Scale score, area under the curve of Rush Dyskinesia Rating Scale score for 3 h post-dose, mood parameters measured by Hospital Anxiety Depression Scale and Montgomery Asberg Depression Rating Scale along with the pharmacokinetics, safety and tolerability profile of eltoprazine. A mixed model repeated measures was used for post hoc analyses of the area under the curve and peak Clinical Dyskinesia Rating Scale scores. It was found that serum concentrations of eltoprazine increased in a dose-proportional manner. Following levodopa challenge, 5 mg eltoprazine caused a significant reduction of l-DOPA-induced dyskinesias on area under the curves of Clinical Dyskinesia Rating Scale [-1.02(1.49); P = 0.004] and Rush Dyskinesia Rating Scale [-0.15(0.23); P = 0.003]; and maximum Clinical Dyskinesia Rating Scale score [-1.14(1.59); P = 0.005]. The post hoc analysis confirmed these results and also showed an antidyskinetic effect of 7.5 mg eltoprazine. Unified Parkinson’s Disease Rating Scale part III scores did not differ between the placebo and eltoprazine treatments. The most frequent adverse effects after eltoprazine were nausea and dizziness. It can be concluded that a single dose, oral treatment with eltoprazine has beneficial antidyskinetic effects without altering normal motor responses to l-DOPA. All doses of eltoprazine were well tolerated, with no major adverse effects. Eltoprazine has a favourable risk-benefit and pharmacokinetic profile in patients with Parkinson’s disease. The data support further clinical studies with chronic oral eltoprazine to treat l-DOPA-induced-dyskinesias.

Concepts: Clinical research, Clinical trial, Effectiveness, Placebo, Parkinson's disease, L-DOPA, Dopamine, Pharmacology