Discover the most talked about and latest scientific content & concepts.

Concept: Dopamine receptor D2


The dopamine D2 receptor (D2R) is involved in food reward and compulsive food intake. The present study developed a virtual screening (VS) method to identify food components, which may modulate D2R signalling. In contrast to their common applications in drug discovery, VS methods are rarely applied for the discovery of bioactive food compounds. Here, databases were created that exclusively contain substances occurring in food and natural sources (about 13,000 different compounds in total) as the basis for combined pharmacophore searching, hit-list clustering and molecular docking into D2R homology models. From 17 compounds finally tested in radioligand assays to determine their binding affinities, seven were classified as hits (hit rate = 41%). Functional properties of the five most active compounds were further examined in β-arrestin recruitment and cAMP inhibition experiments. D2R-promoted G-protein activation was observed for hordenine, a constituent of barley and beer, with approximately identical ligand efficacy as dopamine (76%) and a Ki value of 13 μM. Moreover, hordenine antagonised D2-mediated β-arrestin recruitment indicating functional selectivity. Application of our databases provides new perspectives for the discovery of bioactive food constituents using VS methods. Based on its presence in beer, we suggest that hordenine significantly contributes to mood-elevating effects of beer.

Concepts: Pharmacology, Signal transduction, Receptor antagonist, Dopamine receptor, Agonist, Schizophrenia, Dopamine receptor D2, Adenosine A2A receptor


Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt)/glycogen synthase kinase (GSK)-3 signaling. Here we report that activation of GABAB receptors significantly inhibits Akt/GSK-3 signaling in a beta-arrestin-dependent pathway. Agonist stimulation of GABAB receptors enhances the phosphorylation of Akt (Thr-308) and enhances the phosphorylation of GSK-3alpha (Ser-21)/beta (Ser-9) in both HEK-293T cells expressing GABAB receptors and rat hippocampal slices. Furthermore, knocking down the expression of beta-arrestin2 using siRNA abolishes the GABAB receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABAB receptor agents may exert therapeutic effects in the treatment of schizophrenia.

Concepts: Signal transduction, Receptor, Receptor antagonist, Dopamine receptor, Neurotransmitter, Schizophrenia, Dopamine receptor D2, GABAB receptor


BACKGROUND: The use of mother’s own breast milk during initial hospitalization has a positive impact not only in reducing potential serious neonatal morbidities but also contribute to improvements in neurodevelopmental outcomes. Mothers of very preterm infants struggle to maintain a supply of breast milk during their infants' prolonged hospitalization. Galactogogues are medications that induce lactation by exerting its effects through oxytocin or prolactin enhancement. Domperidone is a potent dopamine D2 receptor antagonist which stimulates the release of prolactin. Small trials have established its ability in enhancing breast milk production. EMPOWER was designed to determine the safety and efficacy of domperidone in mothers experiencing an inadequate milk supply.Methods/designEMPOWER is a multicenter, double masked, randomized controlled phase-II trial to evaluate the safety and effectiveness of domperidone in those mothers identified as having difficulty in breast milk production. Eligible mothers will be randomized to one of two allocated groups: Group A: domperidone 10 mg orally three times daily for 28 days; and Group B: identical placebo 10 mg orally three times daily for 14 days followed by domperidone 10 mg orally three times daily for 14 days. The primary outcome will be determined at the completion of the first 2-week period; the second 2-week period will facilitate answering the secondary questions regarding timing and duration of treatment. To detect an estimated 30% change between the two groups (from 40% to 28%, corresponding to an odds ratio of 0.6), a total sample size of 488 mothers would be required at 80% power and alpha = 0.05. To account for a 15% dropout, this number is increased to 560 (280 per group). The duration of the trial is expected to be 36–40 months. DISCUSSION: The use of a galactogogue often becomes the measure of choice for mothers in the presence of insufficient breast milk production, particularly when the other techniques are unsuccessful. EMPOWER is designed to provide valuable information in guiding the practices for this high-risk group of infants and mothers. The results of this trial will also inform both mothers and clinicians about the choices available to increase and maintain sufficient breast milk.Trial registrationClinical Identifier: NCT01512225.

Concepts: Infant, Milk, Breastfeeding, Lactation, Dopamine receptor, Breast, Breast milk, Dopamine receptor D2


Genetic factors are important in the pathogenesis of Tourette syndrome (TS). Notably, Dopamine receptor D2 (DRD2) gene has been suggested as a possible candidate gene for this disorder. Several studies have demonstrated that DRD2/ANKK1 TaqIA polymorphism is associated with an increased risk of developing TS. However, past results remain conflicting. We addressed this controversy by performing a meta-analysis of the relationship between DRD2/ANKK1 TaqIA polymorphism and TS.

Concepts: Genetics, Allele, Dopamine receptor, Antipsychotic, Schizophrenia, Haloperidol, Dopamine receptor D2, Adenosine A2A receptor


Though Internet gaming disorder (IGD) is considered to share similar genetic vulnerability with substance addictions, little has been explored about the role of the genetic variants on IGD. This pilot study was designed to investigate the association of the Taq1A polymorphism of the ankyrin repeat and kinase domain containing 1 (ANKK1) gene and C957T and - 141C of the dopamine D2 receptor (DRD2) with IGD and their role on the personality and temperament traits in IGD among adult population.

Concepts: Biology, Dopamine receptor, Schizophrenia, Dopamine receptor D2, Adenosine A2A receptor


Aging produces cellular, molecular, and behavioral changes affecting many areas of the brain. The dopamine (DA) system is known to be vulnerable to the effects of aging, which regulate behavioral functions such as locomotor activity, body weight, and reward and cognition. In particular, age-related DA D2 receptor (D2R) changes have been of particular interest given its relationship with addiction and other rewarding behavioral properties. Male and female wild-type (Drd2 +/+), heterozygous (Drd2 +/-) and knockout (Drd2 -/-) mice were reared post-weaning in either an enriched environment (EE) or a deprived environment (DE). Over the course of their lifespan, body weight and locomotor activity was assessed. While an EE was generally found to be correlated with longer lifespan, these increases were only found in mice with normal or decreased expression of the D2 gene. Drd2 +/+ EE mice lived nearly 16% longer than their DE counterparts. Drd2 +/+ and Drd2 +/- EE mice lived 22% and 21% longer than Drd2 -/- EE mice, respectively. Moreover, both body weight and locomotor activity were moderated by environmental factors. In addition, EE mice show greater behavioral variability between genotypes compared to DE mice with respect to body weight and locomotor activity.

Concepts: Psychology, Gene, Dopamine receptor, Schizophrenia, Dopamine receptor D2, Adenosine A2A receptor


D1 and D2 dopamine receptors (D1DRs and D2DRs) may contribute differently to various aspects of memory and cognition. The D1DR system has been linked to functions supported by the prefrontal cortex. By contrast, the role of the D2DR system is less clear, although it has been hypothesized that D2DRs make a specific contribution to hippocampus-based cognitive functions. Here we present results from 181 healthy adults between 64 and 68 y of age who underwent comprehensive assessment of episodic memory, working memory, and processing speed, along with MRI and D2DR assessment with [(11)C]raclopride and PET. Caudate D2DR availability was positively associated with episodic memory but not with working memory or speed. Whole-brain analyses further revealed a relation between hippocampal D2DR availability and episodic memory. Hippocampal and caudate D2DR availability were interrelated, and functional MRI-based resting-state functional connectivity between the ventral caudate and medial temporal cortex increased as a function of caudate D2DR availability. Collectively, these findings indicate that D2DRs make a specific contribution to hippocampus-based cognition by influencing striatal and hippocampal regions, and their interactions.

Concepts: Brain, Memory, Cerebrum, Hippocampus, Dopamine receptor, Schizophrenia, Episodic memory, Dopamine receptor D2


Chronic neuroinflammation is a common feature of the ageing brain and some neurodegenerative disorders. However, the molecular and cellular mechanisms underlying the regulation of innate immunity in the central nervous system remain elusive. Here we show that the astrocytic dopamine D2 receptor (DRD2) modulates innate immunity through αB-crystallin (CRYAB), which is known to suppress neuroinflammation. We demonstrate that knockout mice lacking Drd2 showed remarkable inflammatory response in multiple central nervous system regions and increased the vulnerability of nigral dopaminergic neurons to neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity(3). Astrocytes null for Drd2 became hyper-responsive to immune stimuli with a marked reduction in the level of CRYAB. Preferential ablation of Drd2 in astrocytes robustly activated astrocytes in the substantia nigra. Gain- or loss-of-function studies showed that CRYAB is critical for DRD2-mediated modulation of innate immune response in astrocytes. Furthermore, treatment of wild-type mice with the selective DRD2 agonist quinpirole increased resistance of the nigral dopaminergic neurons to MPTP through partial suppression of inflammation. Our study indicates that astrocytic DRD2 activation normally suppresses neuroinflammation in the central nervous system through a CRYAB-dependent mechanism, and provides a new strategy for targeting the astrocyte-mediated innate immune response in the central nervous system during ageing and disease.

Concepts: Immune system, Nervous system, Innate immune system, Basal ganglia, Dopamine receptor, Schizophrenia, Dopamine, Dopamine receptor D2


Tyrosine hydroxylase (TH)-immunoreactive (ir) neurons have been found in the striatum after dopamine depletion; however, little is known about the mechanism underlying their appearance or their functional significance. We previously showed an increase in striatal TH-ir neurons after L-DOPA treatment in mice with unilateral 6-OHDA lesions in the striatum. In the present study, we further examined the time-course and persistence of the effects of chronic L-DOPA treatment on the appearance and regulation of TH-ir neurons as well as their possible function. We found that the L-DOPA-induced increase in striatal TH-ir neurons is dose-dependent and persists for days after L-DOPA withdrawal, decreasing significantly 10 days after L-DOPA treatment ends. Using hemiparkinsonian D1 receptor knock-out (D1R-/-) and D2 receptor knock-out (D2R-/-) mice, we found that the D1R, but not the D2R, is required for the L-DOPA-induced appearance of TH-ir neurons in the dopamine-depleted striatum. Interestingly, our experiments in aphakia mice, which lack Pitx3 expression in the brain, indicate that the L-DOPA-dependent increase in the number of TH-ir neurons is independent of Pitx3, a transcription factor necessary for the development of mesencephalic dopaminergic neurons. To explore the possible function of L-DOPA-induced TH-ir neurons in the striatum, we examined dopamine overflow and forelimb use in L-DOPA-treated parkinsonian mice. These studies revealed a tight spatio-temporal correlation between the presence of striatal TH-ir neurons, the recovery of electrically stimulated dopamine overflow in the lesioned striatum, and the recovery of contralateral forelimb use with chronic L-DOPA treatment. Our results suggest that the presence of TH-ir neurons in the striatum may underlie the long-duration response to L-DOPA following withdrawal. Promotion of these neurons in the early stages of Parkinson’s disease, when dopamine denervation is incomplete, may be beneficial for maintaining motor function.

Concepts: Parkinson's disease, Dopamine receptor, Neurotransmitter, Epinephrine, Striatum, Dopamine, Norepinephrine, Dopamine receptor D2


Aims: The dopaminergic and endocannabinoid systems are involved in regulation of feeding behavior. The aim of the study is to examine the possible relation between polymorphisms of the dopamine D2 receptor (DRD2) and cannabinoid receptor-1 (CNR1) genes and childhood obesity. Methods: A hundred obese children and 100 healthy controls were analyzed for DRD2 Taq1A and Taq1B and CNR1 1359G/A polymorphisms. Genotyping was performed by polymerase chain reaction and restriction fragment length polymorphism. Results: There were no statistically significant differences in DRD2 Taq1A and DRD2 Taq1B genotypes or allelic frequencies between obese children and controls (p>0.05). In patients with Taq1B2 allele, morbid obesity was less frequent (p=0.010). The frequency of the A allele of CNR1 1359G/A polymorphism was significantly higher in obese children than in controls (21.0% vs. 13.0%, p=0.0166). The frequency of genotypes AG and GG of the CNR1 1359G/A SNP was different between obese children and control subjects (for AG: 34.0% vs. 22.0%, p=0.0294; for GG: 62.0% vs. 76.0%, p=0.0162, respectively). Conclusions: No significant difference was found between genotypes and alleles of DRD2 Taq1A and DRD2 Taq1B polymorphism in patients and controls, while the CNR1 receptor 1359G/A polymorphism and the presence of the A allele may be one risk factor for susceptibility to obesity.

Concepts: DNA, Gene, Genetics, Allele, Nutrition, Statistical significance, Childhood obesity, Dopamine receptor D2