Discover the most talked about and latest scientific content & concepts.

Concept: DNA replication


High-throughput recording of signals embedded within inaccessible micro-environments is a technological challenge. The ideal recording device would be a nanoscale machine capable of quantitatively transducing a wide range of variables into a molecular recording medium suitable for long-term storage and facile readout in the form of digital data. We have recently proposed such a device, in which cation concentrations modulate the misincorporation rate of a DNA polymerase (DNAP) on a known template, allowing DNA sequences to encode information about the local cation concentration. In this work we quantify the cation sensitivity of DNAP misincorporation rates, making possible the indirect readout of cation concentration by DNA sequencing. Using multiplexed deep sequencing, we quantify the misincorporation properties of two DNA polymerases - Dpo4 and Klenow exo(-) - obtaining the probability and base selectivity of misincorporation at all positions within the template. We find that Dpo4 acts as a DNA recording device for Mn(2+) with a misincorporation rate gain of ∼2%/mM. This modulation of misincorporation rate is selective to the template base: the probability of misincorporation on template T by Dpo4 increases >50-fold over the range tested, while the other template bases are affected less strongly. Furthermore, cation concentrations act as scaling factors for misincorporation: on a given template base, Mn(2+) and Mg(2+) change the overall misincorporation rate but do not alter the relative frequencies of incoming misincorporated nucleotides. Characterization of the ion dependence of DNAP misincorporation serves as the first step towards repurposing it as a molecular recording device.

Concepts: DNA, Polymerase chain reaction, Chemistry, DNA replication, DNA polymerase, DNA polymerase I, Polymerase, DNA polymerase III holoenzyme


Some tissue types give rise to human cancers millions of times more often than other tissue types. Although this has been recognized for more than a century, it has never been explained. Here, we show that the lifetime risk of cancers of many different types is strongly correlated (0.81) with the total number of divisions of the normal self-renewing cells maintaining that tissue’s homeostasis. These results suggest that only a third of the variation in cancer risk among tissues is attributable to environmental factors or inherited predispositions. The majority is due to “bad luck,” that is, random mutations arising during DNA replication in normal, noncancerous stem cells. This is important not only for understanding the disease but also for designing strategies to limit the mortality it causes.

Concepts: DNA, Cell, Cancer, Mutation, Ultraviolet, Cell division, Chromosome, DNA replication


In this study, the applicability of droplet digital PCR (ddPCR) for routine analysis in food and feed samples was demonstrated with the quantification of genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of GMOs in products. However, its use is limited for detecting and quantifying very small numbers of DNA targets, as in some complex food and feed matrices. Using ddPCR duplex assay, we have measured the absolute numbers of MON810 transgene and hmg maize reference gene copies in DNA samples. Key performance parameters of the assay were determined. The ddPCR system is shown to offer precise absolute and relative quantification of targets, without the need for calibration curves. The sensitivity (five target DNA copies) of the ddPCR assay compares well with those of individual qPCR assays and of the chamber digital PCR (cdPCR) approach. It offers a dynamic range over four orders of magnitude, greater than that of cdPCR. Moreover, when compared to qPCR, the ddPCR assay showed better repeatability at low target concentrations and a greater tolerance to inhibitors. Finally, ddPCR throughput and cost are advantageous relative to those of qPCR for routine GMO quantification. It is thus concluded that ddPCR technology can be applied for routine quantification of GMOs, or any other domain where quantitative analysis of food and feed samples is needed.

Concepts: DNA, Gene expression, Polymerase chain reaction, Molecular biology, DNA replication, DNA polymerase, Genetically modified organism, Genetically modified food


Molecular biomarkers to determine the effectiveness of targeted therapies in cancer treatment have been widely adopted in colorectal cancer (CRC), but those to predict chemotherapy sensitivity remain poorly defined. We tested our hypothesis that KRAS mutation may be a predictor of oxaliplatin sensitivity in CRC. KRAS was knocked-down in KRAS-mutant CRC cells (DLD-1(G13D) and SW480(G12V)) by small interfering RNAs (siRNA) and overexpressed in KRAS-wild-type CRC cells (COLO320DM) by KRAS-mutant vectors to generate paired CRC cells. These paired CRC cells were tested by oxaliplatin, irinotecan and 5FU to determine the change in drug sensitivity by MTT assay and flow cytometry. Reasons for sensitivity alteration were further determined by western blot and real-time quantitative reverse transcriptase polymerase chain reaction (qRT -PCR). In KRAS-wild-type CRC cells (COLO320DM), KRAS overexpression by mutant vectors caused excision repair cross-complementation group 1 (ERCC1) downregulation in protein and mRNA levels, and enhanced oxaliplatin sensitivity. In contrast, in KRAS-mutant CRC cells (DLD-1(G13D) and SW480(G12V)), KRAS knocked-down by KRAS-siRNA led to ERCC1 upregulation and increased oxaliplatin resistance. The sensitivity of irinotecan and 5FU had not changed in the paired CRC cells. To validate ERCC1 as a predictor of sensitivity for oxaliplatin, ERCC1 was knocked-down by siRNA in KRAS-wild-type CRC cells, which restored oxaliplatin sensitivity. In contrast, ERCC1 was overexpressed by ERCC1-expressing vectors in KRAS-mutant CRC cells, and caused oxaliplatin resistance. Overall, our findings suggest that KRAS mutation is a predictor of oxaliplatin sensitivity in colon cancer cells by the mechanism of ERCC1 downregulation.

Concepts: DNA, Gene expression, Cancer, Polymerase chain reaction, Molecular biology, Colorectal cancer, DNA replication, Reverse transcriptase


BACKGROUND: The aim of this study was to optimize quantitative (real-time) polymerase chain reaction (qPCR) assays for 8 major periodontal pathogens, i.e. Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Parvimonas micros, Porphyromonas gingivalis, Prevotella intermedia, Tanerella forsythia and Treponema denticola, and of the caries pathogen Streptococcus mutans. RESULTS: Eighteen different primer pairs were analyzed in silico regarding specificity (using BLAST analysis) and the presence of secondary structures at primer binding sites (using mFOLD). The most specific and efficiently binding primer pairs, according to these analyses, were selected for qPCR-analysis to determine amplification efficiency, limit of quantification and intra-run reproducibility. For the selected primer pairs, one for each species, the specificity was confirmed by assessing amplification of DNA extracts from isolates of closely related species. For these primer pairs, the intercycler portability was evaluated on 3 different thermal cyclers (the Applied Biosystems 7300, the Bio-Rad iQ5 and the Roche Light Cycler 480). For all assays on the different cyclers, a good correlation of the standard series was obtained (i.e. r2 >= 0.98), but quantification limits varied among cyclers. The overall best quantification limit was obtained by using a 2 mul sample in a final volume of 10 mul on the Light Cycler 480. CONCLUSIONS: In conclusion, the proposed assays allow to quantify the bacterial loads of S. mutans, 6 periodontal pathogenic species and the genus Fusobacterium.This can be of use in assessing periodontal risk, determination of the optimal periodontal therapy and evaluation of this treatment.

Concepts: DNA, Bacteria, Polymerase chain reaction, Microbiology, Pathogen, DNA replication, DNA polymerase, Oral microbiology


Quantitative PCR assays are now the standard method for viral diagnostics. These assays must be specific, as well as sensitive, to detect the potentially low starting copy number of viral genomic material. We describe a new technique, polymerase chain displacement reaction (PCDR), which uses multiple nested primers in a rapid, capped, one-tube reaction that increases the sensitivity of normal quantitative PCR (qPCR) assays. Sensitivity was increased by approximately 10-fold in a proof-of-principle test on dengue virus sequence. In PCDR, when extension occurs from the outer primer, it displaces the extension strand produced from the inner primer by utilizing a polymerase that has strand displacement activity. This allows a greater than 2-fold increase of amplification product for each amplification cycle and therefore increased sensitivity and speed over conventional PCR. Increased sensitivity in PCDR would be useful in nucleic acid detection for viral diagnostics.

Concepts: DNA, Polymerase chain reaction, Molecular biology, Real-time polymerase chain reaction, DNA replication, DNA polymerase, Laboratory techniques, Primer


Sesquiterpene lactones (SLs) are plant-derived compounds that display anti-cancer effects. Some SLs derivatives have a marked killing effect on cancer cells and have therefore reached clinical trials. Little is known regarding the mechanism of action of SLs. We studied the responses of human cancer cells exposed to various concentrations of dehydroleucodine (DhL), a SL of the guaianolide group isolated and purified from Artemisia douglasiana (Besser), a medicinal herb that is commonly used in Argentina. We demonstrate for the first time that treatment of cancer cells with DhL, promotes the accumulation of DNA damage markers such as phosphorylation of ATM and focal organization of γH2AX and 53BP1. This accumulation triggers cell senescence or apoptosis depending on the concentration of the DhL delivered to cells. Transient DhL treatment also induces marked accumulation of senescent cells. Our findings help elucidate the mechanism whereby DhL triggers cell cycle arrest and cell death and provide a basis for further exploration of the effects of DhL in in vivo cancer treatment models.

Concepts: Cancer, Senescence, Cell division, Apoptosis, DNA repair, DNA replication, P53, Sesquiterpene lactone


Samsoeum (SSE), a traditional herbal formula, has been widely used to treat cough, fever, congestion, and emesis for centuries. Recent studies have demonstrated that SSE retains potent pharmacological efficiency in anti-allergic and anti-inflammatory reactions. However, the anti-cancer activity of SSE and its underlying mechanisms have not been studied. Thus, the present study was designed to determine the effect of SSE on cell death and elucidate its detailed mechanism.

Concepts: Cancer, Cell division, Apoptosis, The Canon of Medicine, Chemotherapy, DNA replication, Cultural studies, Herbalism


Identification of acute kidney injury (AKI) can be challenging in patients with underlying chronic disease, and biomarkers often perform poorly in this population. In this study we examined the performance characteristics of the novel biomarker panel of urinary tissue inhibitor of metalloproteinases-2 (TIMP2) and insulin-like growth factor-binding protein 7 ([IGFBP7]) in patients with a variety of comorbid conditions.

Concepts: Medicine, Cell nucleus, Blood, Medical terms, Glucose, Chronic, DNA replication, Acute


Orf virus infection has been prevalent continuously in the population of wild Japanese serows (Capricornis crispus), goat-like grazing cloven-hoofed mammal species that live mainly in mountainous areas of Japan. Currently, definitive diagnosis of infection requires time-consuming laboratory work. To diagnose rapidly on-site, we developed a field-friendly procedure for the detection of orf virus from oral cavity lesions. DNA was extracted from goat saliva spiked with orf virus as a proxy for Japanese serows by a commercial kit without the use of electricity, and the quality of the extracted DNA was evaluated by conventional polymerase chain reaction (PCR). Extracted DNA was amenable to DNA amplification, the same as when extracted in a laboratory. Next, to find optimal conditions for DNA amplification by loop-mediated isothermal amplification (LAMP), Bst and Csa DNA polymerases and 3 colorimetric indicators for visual diagnosis, hydroxy naphthol blue (HNB), malachite green and D-QUICK, were compared using a portable cordless incubator. The combination of Bst or Csa DNA polymerase with HNB was found to be easiest for visual diagnosis by the naked eye, and viral DNA was successfully amplified from all orf virus strains used. These results suggest that the procedure established here can work completely on-site and can be useful for definitive diagnosis and differentiation of orf virus infection in Japanese serows in remote mountainous areas.

Concepts: DNA, Polymerase chain reaction, Enzyme, DNA replication, Reverse transcriptase, DNA polymerase, Polymerase, Primer