SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: DNA repair

745

Genome editing tools such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated system (Cas) have been widely used to modify genes in model systems including animal zygotes and human cells, and hold tremendous promise for both basic research and clinical applications. To date, a serious knowledge gap remains in our understanding of DNA repair mechanisms in human early embryos, and in the efficiency and potential off-target effects of using technologies such as CRISPR/Cas9 in human pre-implantation embryos. In this report, we used tripronuclear (3PN) zygotes to further investigate CRISPR/Cas9-mediated gene editing in human cells. We found that CRISPR/Cas9 could effectively cleave the endogenous β-globin gene (HBB). However, the efficiency of homologous recombination directed repair (HDR) of HBB was low and the edited embryos were mosaic. Off-target cleavage was also apparent in these 3PN zygotes as revealed by the T7E1 assay and whole-exome sequencing. Furthermore, the endogenous delta-globin gene (HBD), which is homologous to HBB, competed with exogenous donor oligos to act as the repair template, leading to untoward mutations. Our data also indicated that repair of the HBB locus in these embryos occurred preferentially through the non-crossover HDR pathway. Taken together, our work highlights the pressing need to further improve the fidelity and specificity of the CRISPR/Cas9 platform, a prerequisite for any clinical applications of CRSIPR/Cas9-mediated editing.

Concepts: DNA, Protein, Gene, Genetics, Bacteria, Evolution, Chromosome, DNA repair

248

Cas9 cleaves specific DNA sequences with the assistance of a programmable single guide RNA (sgRNA). Repairing this broken DNA by the cell’s error-prone non-homologous end joining (NHEJ) machinery leads to insertions and deletions (indels) that often impair DNA function. Using HIV-1, we have now demonstrated that many of these indels are indeed lethal for the virus, but that others lead to the emergence of replication competent viruses that are resistant to Cas9/sgRNA. This unexpected contribution of Cas9 to the development of viral resistance is facilitated by some indels that are not deleterious for viral replication, but that are refractory to recognition by the same sgRNA as a result of changing the target DNA sequences. This observation illustrates two opposite outcomes of Cas9/sgRNA action, i.e., inactivation of HIV-1 and acceleration of viral escape, thereby potentially limiting the use of Cas9/sgRNA in HIV-1 therapy.

Concepts: DNA, Gene, Genetics, Mutation, Virus, Genome, RNA, DNA repair

243

Background The prevalence and spectrum of predisposing mutations among children and adolescents with cancer are largely unknown. Knowledge of such mutations may improve the understanding of tumorigenesis, direct patient care, and enable genetic counseling of patients and families. Methods In 1120 patients younger than 20 years of age, we sequenced the whole genomes (in 595 patients), whole exomes (in 456), or both (in 69). We analyzed the DNA sequences of 565 genes, including 60 that have been associated with autosomal dominant cancer-predisposition syndromes, for the presence of germline mutations. The pathogenicity of the mutations was determined by a panel of medical experts with the use of cancer-specific and locus-specific genetic databases, the medical literature, computational predictions, and second hits identified in the tumor genome. The same approach was used to analyze data from 966 persons who did not have known cancer in the 1000 Genomes Project, and a similar approach was used to analyze data from an autism study (from 515 persons with autism and 208 persons without autism). Results Mutations that were deemed to be pathogenic or probably pathogenic were identified in 95 patients with cancer (8.5%), as compared with 1.1% of the persons in the 1000 Genomes Project and 0.6% of the participants in the autism study. The most commonly mutated genes in the affected patients were TP53 (in 50 patients), APC (in 6), BRCA2 (in 6), NF1 (in 4), PMS2 (in 4), RB1 (in 3), and RUNX1 (in 3). A total of 18 additional patients had protein-truncating mutations in tumor-suppressor genes. Of the 58 patients with a predisposing mutation and available information on family history, 23 (40%) had a family history of cancer. Conclusions Germline mutations in cancer-predisposing genes were identified in 8.5% of the children and adolescents with cancer. Family history did not predict the presence of an underlying predisposition syndrome in most patients. (Funded by the American Lebanese Syrian Associated Charities and the National Cancer Institute.).

Concepts: DNA, Genetics, Cancer, Mutation, Germline mutation, Evolution, Genome, DNA repair

182

The association of histone modification changes with autism spectrum disorder (ASD) has not been systematically examined. We conducted a histone acetylome-wide association study (HAWAS) by performing H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) on 257 postmortem samples from ASD and matched control brains. Despite etiological heterogeneity, ≥68% of syndromic and idiopathic ASD cases shared a common acetylome signature at >5,000 cis-regulatory elements in prefrontal and temporal cortex. Similarly, multiple genes associated with rare genetic mutations in ASD showed common “epimutations.” Acetylome aberrations in ASD were not attributable to genetic differentiation at cis-SNPs and highlighted genes involved in synaptic transmission, ion transport, epilepsy, behavioral abnormality, chemokinesis, histone deacetylation, and immunity. By correlating histone acetylation with genotype, we discovered >2,000 histone acetylation quantitative trait loci (haQTLs) in human brain regions, including four candidate causal variants for psychiatric diseases. Due to the relative stability of histone modifications postmortem, we anticipate that the HAWAS approach will be applicable to multiple diseases.

Concepts: DNA, Gene, Genetics, Brain, Histone, DNA repair, Cerebral cortex, Acetylation

182

In eukaryotes, the classical form of programmed cell death (PCD) is apoptosis, which has as its specific characteristics DNA fragmentation and membrane depolarization. In Escherichia coli a different PCD system has been reported. It is mediated by the toxin-antitoxin system module mazEF. The E. coli mazEF module is one of the most thoroughly studied toxin-antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. mazEF-mediated cell death is a population phenomenon requiring the quorum-sensing pentapeptide NNWNN designated Extracellular Death Factor (EDF). mazEF is triggered by several stressful conditions, including severe damage to the DNA. Here, using confocal microscopy and FACS analysis, we show that under conditions of severe DNA damage, the triggered mazEF-mediated cell death pathway leads to the inhibition of a second cell death pathway. The latter is an apoptotic-like death (ALD); ALD is mediated by recA and lexA. The mazEF-mediated pathway reduces recA mRNA levels. Based on these results, we offer a molecular model for the maintenance of an altruistic characteristic in cell populations. In our model, the ALD pathway is inhibited by the altruistic EDF-mazEF-mediated death pathway.

Concepts: DNA, Protein, Genetics, Bacteria, DNA repair, Escherichia coli, Prokaryote, Programmed cell death

179

The tumour suppressor BRCA1 is mutated in familial breast and ovarian cancer but its role in protecting other tissues from DNA damage has not been explored. Here we show a new role for BRCA1 as a gatekeeper of cardiac function and survival. In mice, loss of BRCA1 in cardiomyocytes results in adverse cardiac remodelling, poor ventricular function and higher mortality in response to ischaemic or genotoxic stress. Mechanistically, loss of cardiomyocyte BRCA1 results in impaired DNA double-strand break repair and activated p53-mediated pro-apoptotic signalling culminating in increased cardiomyocyte apoptosis, whereas deletion of the p53 gene rescues BRCA1-deficient mice from cardiac failure. In human adult and fetal cardiac tissues, ischaemia induces double-strand breaks and upregulates BRCA1 expression. These data reveal BRCA1 as a novel and essential adaptive response molecule shielding cardiomyocytes from DNA damage, apoptosis and heart dysfunction. BRCA1 mutation carriers, in addition to risk of breast and ovarian cancer, may be at a previously unrecognized risk of cardiac failure.

Concepts: DNA, Cancer, Mutation, Heart, DNA repair, BRCA2, P53, BRCA1

177

Repair of DNA double-strand breaks (DSBs) by homologous recombination requires resection of 5'-termini to generate 3'-single-strand DNA tails. Key components of this reaction are exonuclease 1 and the bifunctional endo/exonuclease, Mre11 (refs 2-4). Mre11 endonuclease activity is critical when DSB termini are blocked by bound protein–such as by the DNA end-joining complex, topoisomerases or the meiotic transesterase Spo11 (refs 7-13)–but a specific function for the Mre11 3'-5' exonuclease activity has remained elusive. Here we use Saccharomyces cerevisiae to reveal a role for the Mre11 exonuclease during the resection of Spo11-linked 5'-DNA termini in vivo. We show that the residual resection observed in Exo1-mutant cells is dependent on Mre11, and that both exonuclease activities are required for efficient DSB repair. Previous work has indicated that resection traverses unidirectionally. Using a combination of physical assays for 5'-end processing, our results indicate an alternative mechanism involving bidirectional resection. First, Mre11 nicks the strand to be resected up to 300 nucleotides from the 5'-terminus of the DSB–much further away than previously assumed. Second, this nick enables resection in a bidirectional manner, using Exo1 in the 5'-3' direction away from the DSB, and Mre11 in the 3'-5' direction towards the DSB end. Mre11 exonuclease activity also confers resistance to DNA damage in cycling cells, suggesting that Mre11-catalysed resection may be a general feature of various DNA repair pathways.

Concepts: DNA, Gene, Genetics, Adenosine triphosphate, DNA repair, Homologous recombination, BRCA1, Genetic recombination

173

Lynch syndrome (LS) is characterised by the development of colorectal cancer, endometrial cancer and various other cancers, and is caused by a mutation in one of the mismatch repair genes: MLH1, MSH2, MSH6 or PMS2. In 2007, a group of European experts (the Mallorca group) published guidelines for the clinical management of LS. Since then substantial new information has become available necessitating an update of the guidelines. In 2011 and 2012 workshops were organised in Palma de Mallorca. A total of 35 specialists from 13 countries participated in the meetings. The first step was to formulate important clinical questions. Then a systematic literature search was performed using the Pubmed database and manual searches of relevant articles. During the workshops the outcome of the literature search was discussed in detail. The guidelines described in this paper may be helpful for the appropriate management of families with LS. Prospective controlled studies should be undertaken to improve further the care of these families.

Concepts: Cancer, DNA repair, Colorectal cancer, Hereditary nonpolyposis colorectal cancer, MSH2, MLH1, Palma, Majorca, PMS2

169

Mitochondrial DNA (mtDNA) mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia) due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA) also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J) nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ(0)) mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.

Concepts: DNA, Genetics, Cancer, Mutation, Evolution, Mitochondrial DNA, DNA repair, DNA polymerase

169

Zinc-finger nucleases (ZFNs) and TAL effector nucleases (TALENs) have been shown to induce targeted mutations, but they have not been extensively tested in any animal model. Here, we describe a large-scale comparison of ZFN and TALEN mutagenicity in zebrafish. Using deep sequencing, we found that TALENs are significantly more likely to be mutagenic and induce an average of 10-fold more mutations than ZFNs. We observed a strong correlation between somatic and germ-line mutagenicity, and identified germ line mutations using ZFNs whose somatic mutations rates are well below the commonly used threshold of 1%. Guidelines that have previously been proposed to predict optimal ZFN and TALEN target sites did not predict mutagenicity in vivo. However, we observed a significant negative correlation between TALEN mutagenicity and the number of CpG repeats in TALEN target sites, suggesting that target site methylation may explain the poor mutagenicity of some TALENs in vivo. The higher mutation rates and ability to target essentially any sequence make TALENs the superior technology for targeted mutagenesis in zebrafish, and likely other animal models.

Concepts: DNA, Mutation, DNA repair, Model organism, Animal testing, Site-directed mutagenesis, Mutagenesis, Mutagen