SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Distribution

162

Scientists are increasingly dissatisfied with funding systems that rely on peer assessment and, accordingly, have suggested several proposals for reform. One of these proposals is to distribute available funds equally among all qualified researchers, with no interference from peer review. Despite its numerous benefits, such egalitarian sharing faces the objection, among others, that it would lead to an unacceptable dilution of resources. The aim of the present paper is to assess this particular objection. We estimate (for the Netherlands, the U.S. and the U.K.) how much researchers would receive were they to get an equal share of the government budgets that are currently allocated through competitive peer assessment. For the Netherlands, we furthermore estimate what researchers would receive were we to differentiate between researchers working in low-cost, intermediate-cost and high-cost disciplines. Given these estimates, we then determine what researchers could afford in terms of PhD students, Postdocs, travel and equipment. According to our results, researchers could, on average, maintain current PhD student and Postdoc employment levels, and still have at their disposal a moderate (the U.K.) to considerable (the Netherlands, U.S.) budget for travel and equipment. This suggests that the worry that egalitarian sharing leads to unacceptable dilution of resources is unjustified. Indeed, our results strongly suggest that there is room for far more egalitarian distribution of funds than happens in the highly competitive funding schemes so prevalent today.

Concepts: European Union, Research, Distribution, Netherlands, International trade, Funding, Research funding, PhD

160

Human modification of natural landscapes has influenced surface processes in many settings on Earth. Quantitative data comparing the distribution and behavior of geologic phenomena before and after human arrival are sparse but urgently required to evaluate possible anthropogenic influences on geologic hazards. We conduct field and imagery-based mapping, statistical analysis, and numerical modeling of rockfall boulders triggered by the fatal 2011 Christchurch earthquakes (n = 285) and newly identified prehistoric (Holocene and Pleistocene) boulders (n = 1049). Prehistoric and modern boulders are lithologically equivalent, derived from the same source cliff, and yield consistent power-law frequency-volume distributions. However, a significant population of modern boulders (n = 26) traveled farther downslope (>150 m) than their most-traveled prehistoric counterparts, causing extensive damage to residential dwellings at the foot of the hillslope. Replication of prehistoric boulder distributions using three-dimensional rigid-body numerical models that incorporate lidar-derived digital topography and realistic boulder trajectories and volumes requires the application of a drag coefficient, attributed to moderate to dense slope vegetation, to account for their spatial distribution. Incorporating a spatially variable native forest into the models successfully predicts prehistoric rockfall distributions. Radiocarbon dating provides evidence for 17th to early 20th century deforestation at the study site during Polynesian and European colonization and after emplacement of prehistoric rockfall. Anthropocene deforestation enabled modern rockfalls to exceed the limits of their prehistoric predecessors, highlighting a shift in the geologic expression of rockfalls due to anthropogenic activity. Reforestation of hillslopes by mature native vegetation could help reduce future rockfall hazard.

Concepts: Human, Erosion, Distribution, 20th century, Holocene, Global warming, Geologic time scale, Boulder

149

To develop a comprehensive computational framework to simulate tissue distribution of gold nanoparticles (AuNP) across several species.

Concepts: Nanoparticle, Nanotechnology, Gold, Distribution, Pharmacokinetics

42

Pachycephalosaurids are small, herbivorous dinosaurs with domed skulls formed by massive thickening of the cranial roof. The function of the dome has been a focus of debate: the dome has variously been interpreted as the product of sexual selection, as an adaptation for species recognition, or as a weapon employed in intraspecific combat, where it was used in butting matches as in extant ungulates. This last hypothesis is supported by the recent identification of cranial pathologies in pachycephalosaurids, which appear to represent infections resulting from trauma. However, the frequency and distribution of pathologies have not been studied in a systematic fashion. Here, we show that pachycephalosaurids are characterized by a remarkably high incidence of cranial injury, where 22% of specimens have lesions on the dome. Frequency of injury shows no significant difference between different genera, but flat-headed morphs (here interpreted as juveniles or females) lack lesions. Mapping of injuries onto a digitial pachycephalosaurid skull shows that although lesions are distributed across the dome, they cluster near the apex, which is consistent with the hypothesis that the dome functioned for intraspecific butting matches.

Concepts: Biology, Skull, Injury, Distribution, Physical trauma, Adaptation, Dinosaur, Pachycephalosauria

37

Protected areas are controversial because they are so important for conservation and because they distribute fortune and misfortune unevenly. The nature of that distribution, as well as the terrain of protected areas themselves, have been vigorously contested. In particular, the relationship between protected areas and poverty is a long-running debate in academic and policy circles. We review the origins of this debate and chart its key moments. We then outline the continuing flashpoints and ways in which further evaluation studies could improve the evidence base for policy-making and conservation practice.

Concepts: Evaluation, Distribution, Peer review, Dustin Thomason, Base, The Nature Conservancy

31

Deep learning has become a promising approach for automated support for clinical diagnosis. When medical data samples are limited, collaboration among multiple institutions is necessary to achieve high algorithm performance. However, sharing patient data often has limitations due to technical, legal, or ethical concerns. In this study, we propose methods of distributing deep learning models as an attractive alternative to sharing patient data.

Concepts: Medicine, Medical imaging, Physician, Distribution, Machine learning, Psychiatry, Technical support, Algorithmic efficiency

30

This paper addresses an important multi-disciplinary issue of current interest, that is, the implications of technological design for fairness. A visual, graphical methodology centered on the Taylor-Russell diagram is proposed to address this issue. The Taylor-Russell diagram helps to identify and explore ways in which predictions built into designs can pit the interests of different constituencies against one another. The configuration of the design represents a trade-off between the interests of the communities involved. Whether or not the trade-off is appropriate constitutes a problem of fairness or distributive justice. The breadth of this methodology is supported by a diversity of examples analyzed. These include a surveillance system, an automotive safety system, a civic information system, and the international food distribution system. These examples provide models for application of the methodology to the analysis of designs in further areas of concern. Limitations of the methodology are also discussed. While it helps to identify and clarify issues of fairness in technology design, the methodology does not provide a general theory of fairness, nor can it provide fair solutions to such issues without appeal to further principles or concepts.

Concepts: Scientific method, Engineering, Distribution, Design, Graphic design, Justice, Appropriate technology, Distributive justice

29

Urban endocrine ecology aims to understand how organisms cope with new sources of stress and maintain allostatic load to thrive in an increasingly urbanized world. Recent research efforts have yielded controversial results based on short-term measures of stress, without exploring its fitness effects. We measured feather corticosterone (CORTf, reflecting the duration and amplitude of glucocorticoid secretion over several weeks) and subsequent annual survival in urban and rural burrowing owls. This species shows high individual consistency in fear of humans (i.e., flight initiation distance, FID), allowing us to hypothesize that individuals distribute among habitats according to their tolerance to human disturbance. FIDs were shorter in urban than in rural birds, but CORTf levels did not differ, nor were correlated to FIDs. Survival was twice as high in urban as in rural birds and links with CORTf varied between habitats: while a quadratic relationship supports stabilizing selection in urban birds, high predation rates may have masked CORTf-survival relationship in rural ones. These results evidence that urban life does not constitute an additional source of stress for urban individuals, as shown by their near identical CORTf values compared with rural conspecifics supporting the non-random distribution of individuals among habitats according to their behavioural phenotypes.

Concepts: Anxiety, Cell, Natural selection, Evolution, Ecology, Distribution, According to Jim, Urban culture

28

Community ecologists have attempted to explain species abundance distribution (SAD) shape for more than 80 years, but usually without relating SAD shape explicitly to ecological variables. We explored whether the scale (total assemblage abundance) and shape (assemblage evenness) of avifaunal SADs were related to ecological covariates. We used data on avifaunas, in-site habitat structure and landscape context that were assembled from previous studies; this amounted to 197 transects distributed across 16,000 km(2) of the box-ironbark forests of southeastern Australia. We used Bayesian conditional autoregressive models to link SAD scale and shape to these ecological covariates. Variation in SAD scale was relatable to some ecological covariates, especially to landscape vegetation cover and to tree height. We could not find any relationships between SAD shape and ecological covariates. SAD shape, the core component in SAD theory, may hold little information about how assemblages are governed ecologically and may result from statistical processes, which, if general, would indicate that SAD shape is not useful for distinguishing among theories of assemblage structure.

Concepts: Scientific method, Biodiversity, Biology, Ecology, Distribution, Theory, Vegetation, Landscape ecology

27

To measure the localized irradiance and wavelength distributions from dental light, curing units (LCUs) and establish a method to characterize their output.

Concepts: Quantum mechanics, Light, Distribution