Discover the most talked about and latest scientific content & concepts.

Concept: Distal convoluted tubule


Human pluripotent stem cells (hPSCs) hold great promise for understanding kidney development and disease. We reproducibly differentiated three genetically distinct wild-type hPSC lines to kidney precursors that underwent rudimentary morphogenesis in vitro. They expressed nephron and collecting duct lineage marker genes, several of which are mutated in human kidney disease. Lentiviral-transduced hPSCs expressing reporter genes differentiated similarly to controls in vitro. Kidney progenitors were subcutaneously implanted into immunodeficient mice. By 12 weeks, they formed organ-like masses detectable by bioluminescence imaging. Implants included perfused glomeruli containing human capillaries, podocytes with regions of mature basement membrane, and mesangial cells. After intravenous injection of fluorescent low-molecular-weight dextran, signal was detected in tubules, demonstrating uptake from glomerular filtrate. Thus, we have developed methods to trace hPSC-derived kidney precursors that formed functioning nephrons in vivo. These advances beyond in vitro culture are critical steps toward using hPSCs to model and treat kidney diseases.

Concepts: Kidney, Glomerulus, Bowman's capsule, Nephron, Distal convoluted tubule, Kidney anatomy, Podocyte, Renal corpuscle


The WHO ranks hypertension the leading global risk factor for disease, specifically, cardiovascular disease. Blood pressure is higher in westernized populations consuming sodium-rich processed foods compared to isolated societies consuming potassium-rich natural foods. Evidence suggests that lowering dietary Na(+) is particularly beneficial in hypertensives who consume a high Na(+) diet. Nonetheless, numerous population studies demonstrate a relationship between higher dietary K(+), estimated from urinary excretion or dietary recall, and lower blood pressure regardless of sodium intake. Interventional studies with potassium supplementation suggest it provides a direct benefit; K(+) may also be a marker for other beneficial components of a “natural” diet. Recent studies in rodent models indicate mechanisms for the potassium benefit: the distal tubule Na(+)- Cl(-) cotransporter (NCC) controls Na(+) delivery downstream to the collecting duct where Na(+) reabsorbed by epithelial Na(+) channels (ENaC) drives K(+) secretion and excretion through K(+) channels in the same region. High dietary K(+) provokes a decrease in the NCC activity to drive more K(+) secretion (and Na(+) excretion, analogous to the actions of a thiazide diuretic) whether Na(+) intake is high or low; low dietary K(+) provokes an increase in NCC activity and Na(+) retention, also independent of dietary Na(+) Taken together, the findings suggest that public health efforts directed towards increasing consumption of natural potassium rich foods would reduce blood pressure and, thus, cardiovascular and kidney disease.

Concepts: Epidemiology, Blood, Hypertension, Demography, Potassium, Diuretic, Thiazide, Distal convoluted tubule


Background/Aims: Owing to the precarious blood supply to the renal medulla and the high metabolic requirement of the medullary thick ascending limb of Henle’s loop, this nephron segment should be especially vulnerable when its supply of O(2) declines. Methods: Rats were exposed to 8 or 21% O(2) at different time points up to 5 h, and samples were collected for urine flow rate, urine (U(osm)) and renal papillary (RP(osm)) osmolality, urinary excretion of Na(+), Cl(-), K(+) and Mg(2+), blood gases, erythropoietin and vasopressinase activity in plasma. Other groups of rats were pretreated with desmopressin acetate (dDAVP) or underwent bilateral nephrectomy (BNX) 1 h prior to the exposure. Results: Hypoxic rats had water diuresis (WD) within 2.5 h, as evidenced by lower U(osm) (333 ± 42 mosm/l) and RP(osm) (869 ± 57 mosm/l), thus suggesting that hypoxia led to a failure to achieve osmotic equilibrium within the renal papilla. Circulating vasopressinase activity increased, which was partially renal in origin because it was lower after BNX. The renal concentrating ability during hypoxia was maintained with dDAVP pretreatment, suggesting that dDAVP may have improved O(2) delivery and the active reabsorption of Na(+) in the renal medullary region. Conclusions: WD or high vasopressinase activity may be valuable diagnostic tools to assess renal medullary hypoxia. Pretreatment with dDAVP may prevent these changes during hypoxia.

Concepts: Kidney, Nephron, Distal convoluted tubule, Loop of Henle, Kidney anatomy, Renal medulla, Friedrich Gustav Jakob Henle, Thin ascending limb of loop of Henle


Nephrons comprise a blood filter and an epithelial tubule that is subdivided into proximal and distal segments, but what directs this patterning during kidney organogenesis is not well understood. Using zebrafish, we found that the HNF1β paralogues hnf1ba and hnf1bb, which encode homeodomain transcription factors, are essential for normal segmentation of nephrons. Embryos deficient in hnf1ba and hnf1bb did not express proximal and distal segment markers, yet still developed an epithelial tubule. Initiating hnf1ba/b expression required Pax2a and Pax8, but hnf1ba/b-deficient embryos did not exhibit the expected downregulation of pax2a and pax8 at later stages of development, suggesting complex regulatory loops involving these molecules. Embryos deficient in hnf1ba/b also did not express the irx3b transcription factor, which is responsible for differentiation of the first distal tubule segment. Reciprocally, embryos deficient in irx3b exhibited downregulation of hnf1ba/b transcripts in the distal early segment, suggesting a segment-specific regulatory circuit. Deficiency of hnf1ba/b also led to ectopic expansion of podocytes into the proximal tubule domain. Epistasis experiments showed that the formation of podocytes required wt1a, which encodes the Wilms' tumor suppressor-1 transcription factor, and rbpj, which encodes a mediator of canonical Notch signaling, downstream or parallel to hnf1ba/b. Taken together, these results suggest that Hnf1β factors are essential for normal segmentation of nephrons during kidney organogenesis.

Concepts: DNA, Gene expression, Developmental biology, Glomerulus, Bowman's capsule, Nephron, Transcription factor, Distal convoluted tubule


Prior studies have linked renoprotective effects of estrogens to G-protein-coupled estrogen receptor-1 (GPER-1) and suggest that aldosterone may also activate GPER-1. Here, the role of GPER-1 in murine renal tissue was further evaluated by examining its anatomical distribution, subcellular distribution and steroid binding specificity. Dual immunofluorescent staining using position-specific markers showed that GPER-1 immunoreactivity primarily resides in distal convoluted tubules and the Loop of Henle (stained with Tamm-Horsfall Protein-1). Lower GPER-1 expression was observed in proximal convoluted tubules marked with megalin, and GPER-1 was not detected in collecting ducts. Plasma membrane fractions prepared from whole kidney tissue or HEK293 cells expressing recombinant human GPER-1 (HEK-GPER-1) displayed high-affinity, specific [3H]-17β-estradiol ([3H]-E2) binding, but no specific [3H]-aldosterone binding. In contrast, cytosolic preparations exhibited specific binding to [3H]-aldosterone but not to [3H]-E2, consistent with the subcellular distribution of GPER-1 and mineralocorticoid receptor (MR) in these preparations. Aldosterone and MR antagonists, spironolactone and eplerenone, failed to compete for specific [(3)H]-E2 binding to membranes of HEK-GPER-1 cells. Furthermore, aldosterone did not increase [(35)S]-GTP-γS binding to membranes of HEK-GPER-1 cells, indicating that it is not involved in G protein signaling mediated through GPER-1. During the secretory phases of the estrus cycle, GPER-1 is upregulated on cortical epithelia and localized to the basolateral surface during proestrus and redistributed intracellularly during estrus. GPER-1 is down-modulated during luteal phases of the estrus cycle with significantly less receptor on the surface of renal epithelia. Our results demonstrate that GPER-1 is associated with specific estrogen binding and not aldosterone binding and that GPER-1 expression is modulated during the estrus cycle which may suggest a physiological role for GPER-1 in the kidney during reproduction.

Concepts: Kidney, Signal transduction, Cell membrane, Nephron, Aldosterone, Menstrual cycle, Distal convoluted tubule, Loop of Henle


Unilateral ureteral obstruction (UUO), a widely used model of chronic kidney disease and congenital obstructive uropathy, causes proximal tubular injury and formation of atubular glomeruli. Because transforming growth factor-β1 (TGF-β1) is a central regulator of renal injury, neonatal and adult mice were subjected to complete UUO under general anesthesia and treated with vehicle or ALK5 TGF-β1 receptor inhibitor (IN-1130, 30 mg/kg/d). After 14 days, glomerulotubular integrity and proximal tubular mass were determined by morphometry of Lotus tetragonolobus lectin distribution, and the fraction of atubular glomeruli was determined by serial section analysis of randomly selected individual glomeruli. Glomerular area, macrophage infiltration, fibronectin distribution and interstitial collagen were measured by morphometry. Compared to placebo, inhibition of TGF-β1 by IN-1130 decreased apoptosis and formation of atubular glomeruli, prevented parenchymal loss, increased glomerular area and glomerulotubular integrity, and increased proximal tubule fraction of the adult obstructed kidney parenchyma from 17% to 30% (p<0.05, respectively). IN-1130 decreased macrophage infiltration and fibronectin and collagen deposition in the adult obstructed kidney by ~50% (p<0.05, respectively). In contrast to these salutary effects in the adult, IN-1130 caused widespread necrosis in obstructed neonatal kidneys. We conclude that whereas IN-1130 reduces obstructive injury in adult kidneys through preservation of glomerulotubular integrity and proximal tubular mass, TGF-β1 inhibition aggravates obstructive injury in neonates. These results indicate that while caution is necessary in treating congenital uropathies, ALK5 inhibitors may prevent nephron loss due to adult kidney disease.

Concepts: Chronic kidney disease, Kidney, Glomerulus, Bowman's capsule, Nephron, Renal cortex, Distal convoluted tubule, Renal corpuscle


Proximal renal tubular acidosis (RTA) (Type II RTA) is characterized by a defect in the ability to reabsorb HCO(3) in the proximal tubule. This is usually manifested as bicarbonate wastage in the urine reflecting that the defect in proximal tubular transport is severe enough that the capacity for bicarbonate reabsorption in the thick ascending limb of Henle’s loop and more distal nephron segments is overwhelmed. More subtle defects in proximal bicarbonate transport likely go clinically unrecognized owing to compensatory reabsorption of bicarbonate distally. Inherited proximal RTA is more commonly autosomal recessive and has been associated with mutations in the basolateral sodium-bicarbonate cotransporter (NBCe1). Mutations in this transporter lead to reduced activity and/or trafficking, thus disrupting the normal bicarbonate reabsorption process of the proximal tubules. As an isolated defect for bicarbonate transport, proximal RTA is rare and is more often associated with the Fanconi syndrome characterized by urinary wastage of solutes like phosphate, uric acid, glucose, amino acids, low-molecular-weight proteins as well as bicarbonate. A vast array of rare tubular disorders may cause proximal RTA but most commonly it is induced by drugs. With the exception of carbonic anhydrase inhibitors which cause isolated proximal RTA, drug-induced proximal RTA is associated with Fanconi syndrome. Drugs that have been recently recognized to cause severe proximal RTA with Fanconi syndrome include ifosfamide, valproic acid and various antiretrovirals such as Tenofovir particularly when given to human immunodeficiency virus patients receiving concomitantly protease inhibitors such as ritonavir or reverse transcriptase inhibitors such as didanosine.

Concepts: Antiretroviral drug, Reverse transcriptase inhibitor, Kidney, Nephron, Distal convoluted tubule, Metanephric blastema, Loop of Henle, Kidney anatomy


During nephrogenesis, POU domain class 3 transcription factor 3 (POU3F3 aka BRN1) is critically involved in development of distinct nephron segments, including the thick ascending limb of the loop of Henle (TAL). Deficiency of POU3F3 in knock-out mice leads to underdevelopment of the TAL, lack of differentiation of TAL cells, and perinatal death due to renal failure. Pou3f3L423P mutant mice, which were established in the Munich ENU Mouse Mutagenesis Project, carry a recessive point mutation in the homeobox domain of POU3F3. Homozygous Pou3f3L423P mutants are viable and fertile. The present study used functional, as well as qualitative and quantitative morphological analyses to characterize the renal phenotype of juvenile (12 days) and aged (60 weeks) homo- and heterozygous Pou3f3L423P mutant mice and age-matched wild-type controls. In both age groups, homozygous mutants vs. control mice displayed significantly smaller kidney volumes, decreased nephron numbers and mean glomerular volumes, smaller TAL volumes, as well as lower volume densities of the TAL in the kidney. No histological or ultrastructural lesions of TAL cells or glomerular cells were observed in homozygous mutant mice. Aged homozygous mutants displayed increased serum urea concentrations and reduced specific urine gravity, but no evidence of glomerular dysfunction. These results confirm the role of POU3F3 in development and function of the TAL and provide new evidence for its involvement in regulation of the nephron number in the kidney. Therefore, Pou3f3L423P mutant mice represent a valuable research model for further analyses of POU3F3 functions, or for nephrological studies examining the role of congenital low nephron numbers.

Concepts: Kidney, Gene, Mutation, Glomerulus, Nephron, Distal convoluted tubule, Loop of Henle, Renal medulla


The kidney has a tremendous capacity to regenerate following injury, but factors that govern this response are still largely unknown. We isolated cells from mouse kidneys with high proliferative and multi-lineage differentiation capacity. These cells expressed a high level of Sox9. In regenerating kidneys, Sox9 expression was induced early, and 89% of proliferating cells were Sox9 positive. In vitro, Sox9-positive cells showed unlimited proliferation and multi-lineage differentiation capacity. Using an inducible Sox9 Cre line and lineage-tagging methods, we show that Sox9-positive cells can generate new daughter cells, contributing to the regeneration of proximal tubule, loop of Henle, and distal tubule segments but not to collecting duct and glomerular cells. Furthermore, inducible deletion of Sox9 resulted in reduced epithelial proliferation, more severe injury, and fibrosis development. In summary, we demonstrate that, in the kidney, Sox9-positive cells show progenitor-like properties in vitro and contribute to epithelial regeneration following injury in vivo.

Concepts: Kidney, Glomerulus, Nephron, Distal convoluted tubule, Metanephric blastema, Loop of Henle, Kidney anatomy, Renal medulla


Background Hyperkalemia in association with metabolic acidosis that are out of proportion to changes in glomerular filtration rate defines type 4 renal tubular acidosis (RTA), the most common RTA observed, but the molecular mechanisms underlying the associated metabolic acidosis are incompletely understood. We sought to determine whether hyperkalemia directly causes metabolic acidosis and, if so, the mechanisms through which this occurs.MethodsWe studied a genetic model of hyperkalemia that results from early distal convoluted tubule (DCT)-specific overexpression of constitutively active Ste20/SPS1-related proline-alanine-rich kinase (DCT-CA-SPAK).ResultsDCT-CA-SPAK mice developed hyperkalemia in association with metabolic acidosis and suppressed ammonia excretion; however, titratable acid excretion and urine pH were unchanged compared with those in wild-type mice. Abnormal ammonia excretion in DCT-CA-SPAK mice associated with decreased proximal tubule expression of the ammonia-generating enzymes phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase and overexpression of the ammonia-recycling enzyme glutamine synthetase. These mice also had decreased expression of the ammonia transporter family member Rhcg and decreased apical polarization of H+-ATPase in the inner stripe of the outer medullary collecting duct. Correcting the hyperkalemia by treatment with hydrochlorothiazide corrected the metabolic acidosis, increased ammonia excretion, and normalized ammoniagenic enzyme and Rhcg expression in DCT-CA-SPAK mice. In wild-type mice, induction of hyperkalemia by administration of the epithelial sodium channel blocker benzamil caused hyperkalemia and suppressed ammonia excretion.ConclusionsHyperkalemia decreases proximal tubule ammonia generation and collecting duct ammonia transport, leading to impaired ammonia excretion that causes metabolic acidosis.

Concepts: Renal failure, Dialysis, Metabolism, Enzyme, Glomerulus, Nephron, Urea, Distal convoluted tubule