Discover the most talked about and latest scientific content & concepts.

Concept: Diffusion MRI


Creativity is a vast construct, seemingly intractable to scientific inquiry-perhaps due to the vague concepts applied to the field of research. One attempt to limit the purview of creative cognition formulates the construct in terms of evolutionary constraints, namely that of blind variation and selective retention (BVSR). Behaviorally, one can limit the “blind variation” component to idea generation tests as manifested by measures of divergent thinking. The “selective retention” component can be represented by measures of convergent thinking, as represented by measures of remote associates. We summarize results from measures of creative cognition, correlated with structural neuroimaging measures including structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), and proton magnetic resonance spectroscopy (1H-MRS). We also review lesion studies, considered to be the “gold standard” of brain-behavioral studies. What emerges is a picture consistent with theories of disinhibitory brain features subserving creative cognition, as described previously (Martindale, 1981). We provide a perspective, involving aspects of the default mode network (DMN), which might provide a “first approximation” regarding how creative cognition might map on to the human brain.

Concepts: Brain, Medical imaging, Neuroimaging, Nuclear magnetic resonance, Magnetic resonance imaging, Thought, Diffusion MRI, In vivo magnetic resonance spectroscopy


This work aimed to determine whether (1)H magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are correlated with years of meditation and psychological variables in long-term Zen meditators compared to healthy non-meditator controls.

Concepts: Brain, Medical imaging, Brain tumor, Nuclear magnetic resonance, Magnetic resonance imaging, Diffusion MRI, In vivo magnetic resonance spectroscopy, Zen


BACKGROUND: Although diffusion tensor imaging has been a major research focus for Alzheimer’s disease in recent years, it remains unclear whether it has sufficient stability to have biomarker potential. To date, frequently inconsistent results have been reported, though lack of standardisation in acquisition and analysis make such discrepancies difficult to interpret. There is also, at present, little knowledge of how the biometric properties of diffusion tensor imaging might evolve in the course of Alzheimer’s disease. METHODS: The biomarker question was addressed in this study by adopting a standardised protocol both for the whole brain (tract-based spatial statistics), and for a region of interest: the midline corpus callosum. In order to study the evolution of tensor changes, cross-sectional data from very mild (N = 21) and mild (N = 22) Alzheimer’s disease patients were examined as well as a longitudinal cohort (N = 16) that had been rescanned at 12 months. FINDINGS AND SIGNIFICANCE: The results revealed that increased axial and mean diffusivity are the first abnormalities to occur and that the first region to develop such significant differences was mesial parietal/splenial white matter; these metrics, however, remained relatively static with advancing disease indicating they are suitable as ‘state-specific’ markers. In contrast, increased radial diffusivity, and therefore decreased fractional anisotropy-though less detectable early-became increasingly abnormal with disease progression, and, in the splenium of the corpus callosum, correlated significantly with dementia severity; these metrics therefore appear ‘stage-specific’ and would be ideal for monitoring disease progression. In addition, the cross-sectional and longitudinal analyses showed that the progressive abnormalities in radial diffusivity and fractional anisotropy always occurred in areas that had first shown an increase in axial and mean diffusivity. Given that the former two metrics correlate with dementia severity, but the latter two did not, it would appear that increased axial diffusivity represents an upstream event that precedes neuronal loss.

Concepts: Alzheimer's disease, Neuron, Medical imaging, Neuroimaging, Dementia, Diffusion MRI, Corpus callosum, Imaging


BACKGROUND: Diffusion tensor imaging (DTI) is increasingly used in various diseases as a clinical tool for assessing the integrity of the brain’s white matter. Reduced fractional anisotropy (FA) and an increased apparent diffusion coefficient (ADC) are nonspecific findings in most pathological processes affecting the brain’s parenchyma. At present, there is no gold standard for validating diffusion measures, which are dependent on the scanning protocols, methods of the softwares and observers. Therefore, the normal variation and repeatability effects on commonly-derived measures should be carefully examined. METHODS: Thirty healthy volunteers (mean age 37.8 years, SD 11.4) underwent DTI of the brain with 3T MRI. Region-of-interest (ROI) -based measurements were calculated at eleven anatomical locations in the pyramidal tracts, corpus callosum and frontobasal area. Two ROI-based methods, the circular method (CM) and the freehand method (FM), were compared. Both methods were also compared by performing measurements on a DTI phantom. The intra- and inter-observer variability (coefficient of variation, or CV%) and repeatability (intra-class correlation coefficient, or ICC) were assessed for FA and ADC values obtained using both ROI methods. RESULTS: The mean FA values for all of the regions were 0.663 with the CM and 0.621 with the FM. For both methods, the FA was highest in the splenium of the corpus callosum. The mean ADC value was 0.727 x10-3 mm2/s with the CM and 0.747 x10-3 mm2/s with the FM, and both methods found the ADC to be lowest in the corona radiata. The CV percentages of the derived measures were < 13% with the CM and < 10% with the FM. In most of the regions, the ICCs were excellent or moderate for both methods. With the CM, the highest ICC for FA was in the posterior limb of the internal capsule (0.90), and with the FM, it was in the corona radiata (0.86). For ADC, the highest ICC was found in the genu of the corpus callosum (0.93) with the CM and in the uncinate fasciculus (0.92) with FM. CONCLUSIONS: With both ROI-based methods variability was low and repeatability was moderate. The circular method gave higher repeatability, but variation was slightly lower using the freehand method. The circular method can be recommended for the posterior limb of the internal capsule and splenium of the corpus callosum, and the freehand method for the corona radiata.

Concepts: Brain, Neuroimaging, Magnetic resonance imaging, Cerebrum, Diffusion, Diffusion MRI, Corpus callosum, Atomic diffusion


BACKGROUND: The treatment planning of spine pathologies requires information on the rigidity and permeability of the intervertebral discs (IVDs). Magnetic resonance imaging (MRI) offers great potential as a sensitive and non-invasive technique for describing the mechanical properties of IVDs. However, the literature reported small correlation coefficients between mechanical properties and MRI parameters. Our hypothesis is that the compressive modulus and the permeability of the IVD can be predicted by a linear combination of MRI parameters. METHODS: Sixty IVDs were harvested from bovine tails, and randomly separated in four groups (in-situ, digested-6h, digested-18h, digested-24h). Multi-parametric MRI acquisitions were used to quantify the relaxation times T1 and T2, the magnetization transfer ratio MTR, the apparent diffusion coefficient ADC and the fractional anisotropy FA. Unconfined compression, confined compression and direct permeability measurements were performed to quantify the compressive moduli and the hydraulic permeabilities. Differences between groups were evaluated from a one way ANOVA. Multi linear regressions were performed between dependent mechanical properties and independent MRI parameters to verify our hypothesis. A principal component analysis was used to convert the set of possibly correlated variables into a set of linearly uncorrelated variables. Agglomerative Hierarchical Clustering was performed on the 3 principal components. RESULTS: Multilinear regressions showed that 45 to 80% of the Young’s modulus E, the aggregate modulus in absence of deformation HA0, the radial permeability kr and the axial permeability in absence of deformation k0 can be explained by the MRI parameters within both the nucleus pulposus and the annulus pulposus. The principal component analysis reduced our variables to two principal components with a cumulative variability of 52-65%, which increased to 70-82% when considering the third principal component. The dendograms showed a natural division into four clusters for the nucleus pulposus and into three or four clusters for the annulus fibrosus. CONCLUSIONS: The compressive moduli and the permeabilities of isolated IVDs can be assessed mostly by MT and diffusion sequences. However, the relationships have to be improved with the inclusion of MRI parameters more sensitive to IVD degeneration. Before the use of this technique to quantify the mechanical properties of IVDs in vivo on patients suffering from various diseases, the relationships have to be defined for each degeneration state of the tissue that mimics the pathology. Our MRI protocol associated to principal component analysis and agglomerative hierarchical clustering are promising tools to classify the degenerated intervertebral discs and further find biomarkers and predictive factors of the evolution of the pathologies.

Concepts: Nuclear magnetic resonance, Magnetic resonance imaging, Principal component analysis, Diffusion MRI, Pearson product-moment correlation coefficient, Spin echo, Young's modulus, Helium


Hair-pulling disorder (trichotillomania, HPD) is a disabling condition that is characterized by repetitive hair-pulling resulting in hair loss. Although there is evidence of structural grey matter abnormalities in HPD, there is a paucity of data on white matter integrity. The aim of this study was to explore white matter integrity using diffusion tensor imaging (DTI) in subjects with HPD and healthy controls. Sixteen adult female subjects with HPD and 13 healthy female controls underwent DTI. Hair-pulling symptom severity, anxiety and depressive symptoms were also assessed. Tract-based spatial statistics were used to analyze data on fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). There were no differences in DTI measures between HPD subjects and healthy controls. However, there were significant associations of increased MD in white matter tracts of the fronto-striatal-thalamic pathway with longer HPD duration and increased HPD severity. Our findings suggest that white matter integrity in fronto-striatal-thalamic pathways in HPD is related to symptom duration and severity. The molecular basis of measures of white matter integrity in HPD deserves further exploration.

Concepts: Anxiety, Statistics, Symptoms, Symptom, White matter, Diffusion MRI, Imaging, Tensors


Purpose: To flesh out the ESUR guidelines for the standardized interpretation of multiparametric magnetic resonance imaging (mMRI) for the detection of prostate cancer and to present a graphic reporting scheme for improved communication of findings to urologists. Materials and Methods: The ESUR has recently published a structured reporting system for mMRI of the prostate (PI-RADS). This system involves the use of 5-point Likert scales for grading the findings obtained with different MRI techniques. The mMRI includes T2-weighted MRI, diffusion-weighted imaging, dynamic contrast-enhanced MRI, and MR spectroscopy. In a first step, the fundamentals of technical implementation were determined by consensus, taking into account in particular the German-speaking community. Then, representative images were selected by consensus on the basis of examinations of the three institutions. In addition, scoring intervals for an aggregated PI-RADS score were determined in consensus. Results: The multiparametric methods were discussed critically with regard to implementation and the current status. Criteria used for grading mMRI findings with the PI-RADS classification were concretized by succinct examples. Using the consensus table for aggregated scoring in a clinical setting, a diagnosis of suspected prostate cancer should be made if the PI-RADS score is 4 or higher (≥ 10 points if 3 techniques are used or ≥ 13 points if 4 techniques are used). Finally, a graphic scheme was developed for communicating mMRI prostate findings. Conclusion: Structured reporting according to the ESUR guidelines contributes to quality assurance by standardizing prostate mMRI, and it facilities the communication of findings to urologists.

Concepts: Cancer, Medical imaging, Prostate cancer, Nuclear magnetic resonance, Magnetic resonance imaging, Radiology, Diffusion MRI, In vivo magnetic resonance spectroscopy


The use of cannabis with higher ��9-tetrahydrocannabinol content has been associated with greater risk, and earlier onset, of psychosis. However, the effect of cannabis potency on brain morphology has never been explored. Here, we investigated whether cannabis potency and pattern of use are associated with changes in corpus callosum (CC) microstructural organization, in patients with first-episode psychosis (FEP) and individuals without psychosis, cannabis users and non-users. Method The CC of 56 FEP (37 cannabis users) and 43 individuals without psychosis (22 cannabis users) was virtually dissected and segmented using diffusion tensor imaging tractography. The diffusion index of fractional anisotropy, mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity was calculated for each segment.

Concepts: Neuroimaging, Magnetic resonance imaging, Cerebrum, Diffusion MRI, Corpus callosum, Imaging, Agenesis of the corpus callosum, Tensors


Auditory cues are frequently used to support movement learning and rehabilitation, but the neural basis of this behavioural effect is not yet clear. We investigated the microstructural neuroplasticity effects of adding musical cues to a motor learning task. We hypothesised that music-cued, left-handed motor training would increase fractional anisotropy (FA) in the contralateral arcuate fasciculus, a fibre tract connecting auditory, pre-motor and motor regions. Thirty right-handed participants were assigned to a motor learning condition either with (Music Group) or without (Control Group) musical cues. Participants completed 20minutes of training three times per week over four weeks. Diffusion tensor MRI and probabilistic neighbourhood tractography identified FA, axial (AD) and radial (RD) diffusivity before and after training. Results revealed that FA increased significantly in the right arcuate fasciculus of the Music group only, as hypothesised, with trends for AD to increase and RD to decrease, a pattern of results consistent with activity-dependent increases in myelination. No significant changes were found in the left ipsilateral arcuate fasciculus of either group. This is the first evidence that adding musical cues to movement learning can induce rapid microstructural change in white matter pathways in adults, with potential implications for therapeutic clinical practice.

Concepts: Nervous system, Psychology, Neuron, Magnetic resonance imaging, Cerebrum, Left-handedness, Diffusion MRI, Music


Quantifying the microstructural properties of the human brain’s connections is necessary for understanding normal ageing and disease. Here we examine brain white matter magnetic resonance imaging (MRI) data in 3,513 generally healthy people aged 44.64-77.12 years from the UK Biobank. Using conventional water diffusion measures and newer, rarely studied indices from neurite orientation dispersion and density imaging, we document large age associations with white matter microstructure. Mean diffusivity is the most age-sensitive measure, with negative age associations strongest in the thalamic radiation and association fibres. White matter microstructure across brain tracts becomes increasingly correlated in older age. This may reflect an age-related aggregation of systemic detrimental effects. We report several other novel results, including age associations with hemisphere and sex, and comparative volumetric MRI analyses. Results from this unusually large, single-scanner sample provide one of the most extensive characterizations of age associations with major white matter tracts in the human brain.

Concepts: Neuroanatomy, Brain, Brain tumor, Nuclear magnetic resonance, Magnetic resonance imaging, White matter, Cerebellum, Diffusion MRI