Discover the most talked about and latest scientific content & concepts.

Concept: Differential calculus


The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become less steep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountain environments. However, the sensitivity of the lapse rate to climate change is uncertain because of poor constraints on high-elevation temperature during past climate states. We present a 25,000-year temperature reconstruction from Mount Kenya, East Africa, which demonstrates that cooling during the Last Glacial Maximum was amplified with elevation and hence that the lapse rate was significantly steeper than today. Comparison of our data with paleoclimate simulations indicates that state-of-the-art models underestimate this lapse-rate change. Consequently, future high-elevation tropical warming may be even greater than predicted.

Concepts: Temperature, Nairobi, Tropics, Differential calculus, Future, Kenya, Gradient, History of climate


MicroRNAs (miRNAs) have been described to simultaneously inhibit hundreds of targets, albeit to a modest extent. It was recently proposed that there could exist more specific, exceptionally strong binding to a subgroup of targets. However, it is unknown, whether this is the case and how such targets can be identified. Using Argonaute2-ribonucleoprotein immunoprecipitation and in vivo competitive binding assays, we demonstrate for miRNAs-21, -199-3p and let-7 exceptional regulation of a subset of targets, which are characterized by preferential miRNA binding. We confirm this finding by analysis of independent quantitative proteome and transcriptome datasets obtained after miRNA silencing. Our data suggest that mammalian miRNA activity is guided by preferential binding of a small set of 3'-untranslated regions, thereby shaping a steep gradient of regulation between potential targets. Our approach can be applied for transcriptome-wide identification of such targets independently of the presence of seed complementary sequences or other predictors.

Concepts: Antagomir, Gradient, Differential calculus, RNA, MicroRNA


Continental slopes are among the steepest environmental gradients on earth. However, they still lack finer quantification and characterisation of their faunal diversity patterns for many parts of the world.

Concepts: Europe, Precipitation, Universe, Differential calculus, World, Earth, Gradient, Slope


Boulders are ubiquitously found on the surfaces of small rocky bodies in the inner solar system and their spatial and size distributions give insight into the geological evolution and collisional history of the parent bodies. Using images acquired by the Chang'e-2 spacecraft, more than 200 boulders have been identified over the imaged area of the near-Earth asteroid Toutatis. The cumulative boulder size frequency distribution (SFD) shows a steep slope of -4.4 ± 0.1, which is indicative of a high degree of fragmentation. Similar to Itokawa, Toutatis probably has a rubble-pile structure, as most boulders on its surface cannot solely be explained by impact cratering. The significantly steeper slope for Toutatis' boulder SFD compared to Itokawa may imply a different preservation state or diverse formation scenarios. In addition, the cumulative crater SFD has been used to estimate a surface crater retention age of approximately 1.6 ± 0.3 Gyr.

Concepts: Meteoroid, Mars, Differential calculus, Asteroid, Slope, Analytic geometry, Impact crater, Solar System


Perception of hill slant is exaggerated in explicit awareness. Proffitt (Perspectives on Psychological Science 1:110-122, 2006) argued that explicit perception of the slant of a climb allows individuals to plan locomotion in keeping with their available locomotor resources, yet no behavioral evidence supports this contention. Pedestrians in a built environment can often avoid climbing stairs, the man-made equivalent of steep hills, by choosing an adjacent escalator. Stair climbing is avoided more by women, the old, and the overweight than by their comparators. Two studies tested perceived steepness of the stairs as a cue that promotes this avoidance. In the first study, participants estimated the steepness of a staircase in a train station (n = 269). Sex, age, height, and weight were recorded. Women, older individuals, and those who were heavier and shorter reported the staircase as steeper than did their comparison groups. In a follow-up study in a shopping mall, pedestrians were recruited from those who chose the stairs and those who avoided them, with the samples stratified for sex, age, and weight status. Participants (n = 229) estimated the steepness of a life-sized image of the stairs they had just encountered, presented on the wall of a vacant shop in the mall. Pedestrians who avoided stair climbing by choosing the escalator reported the stairs as steeper even when demographic differences were controlled. Perceived steepness may to be a contextual cue that pedestrians use to avoid stair climbing when an alternative is available.

Concepts: Stairways, Differential calculus, Climbing, Stairway, Locomotion, Shopping mall, Psychology


The apparent slope of a hill, termed geographical slant perception, is overestimated in explicit awareness. Proffitt (2006) argued that overestimation allows individuals to manage their locomotor resources. Increasing age, fatigue, and wearing a heavy back pack will reduce the available resources and result in steeper reports for a particular hill. In contrast, Durgin and colleagues have proposed an alternative explanation for these effects based on experimental design-particularly, the potential effects of experimental demand. Proffitt’s resource-based model would predict that pedestrians with reduced resources should avoid climbing a hill that would further deplete their resources if the opportunity arose. Within the built environment, stairs are the man-made equivalent of relatively steep hills (20°-30°). In many public access settings, pedestrians can avoid climbing the stairs by opting for an adjacent escalator. Observations of pedestrian behavior in shopping malls reveal that 94.5 % do so. This article summarizes the effects of demographic grouping on avoidance of stairs in public health research. Observations in shopping malls (n = 355,069) and travel contexts (n = 711,867) provide data consistent with Proffitt’s resource model. Women, the old, and those carrying excess body weight or large bags avoid the stairs more than do their comparison groups. Discussion focuses on differences in physiology that may underlie avoidance of stair climbing in order to highlight the pedestrian behavior that psychology needs to explain.

Concepts: Scientific method, Retailing, Differential calculus, Psychology, Escalator, Shopping mall, The Pedestrian, Locomotion


In this paper, we consider stochastic second-order-cone complementarity problems (SSOCCP). We first use the so-called second-order-cone complementarity function to present an expected residual minimization (ERM) model for giving reasonable solutions of SSOCCP. Then, we introduce a smoothing function, by which we obtain a smoothing approximate ERM model. We further show that the global solution sequence and weak stationary point sequence of this smoothing approximate ERM model converge to the global solution and the weak stationary point of the original ERM model as the smoothing parameter tends to zero respectively. Moreover, since the ERM formulation contains an expectation, we employ a sample average approximate method for solving the smoothing ERM model. As the convergence analysis, we first show that the global optimal solution of this smoothing sample average approximate problem converges to the global optimal solution of the ERM problem with probability one. Subsequently, we consider the weak stationary points' convergence results of this smoothing sample average approximate problem of ERM model. Finally, some numerical examples are given to explain that the proposed methods are feasible.

Concepts: Sequence, Approximation, Convergence, Stationary point, Arithmetic mean, Numerical analysis, Differential calculus, Optimization


The medial entorhinal cortex (mEC) has an important role in the generation and propagation of seizure activity. The organisation of the mEC is such that a number of dorso-ventral relationships exist in neurophysiological properties of neurons. These range from intrinsic and synaptic properties to density of inhibitory connectivity. We examined the influence of these gradients on generation and propagation of epileptiform activity in the mEC. Using a 16-shank silicon probe array to record along the dorso-ventral axis of the mEC in vitro, we found 4-aminopyridine (4-AP) application produces ictal-like activity originating predominantly in ventral areas. This activity spreads to dorsal mEC at a surprisingly slow velocity (138 μm.s-1), while cross-site interictal-like activity appeared relatively synchronous. We propose that ictal propagation is constrained by differential levels of GABAergic control since increasing (diazepam) or decreasing (Ro19-4603) GABAAreceptor activation, respectively, reduced or increased the slope of ictal initiation. The observation that ictal activity is predominately generated in ventral mEC was replicated using a separate 0-Mg2+model of epileptiform activity in vitro. By using a distinct disinhibition model (co-application of kainate and picrotoxin) we show that additional physiological features (for example intrinsic properties of mEC neurons) still produce a prevalence for interictal-like initiation in ventral mEC. These findings suggest that the ventral mEC is more likely to initiate hyperexcitable discharges than dorsal, and that seizure propagation is highly dependent on levels of GABAergic expression across the mEC. This article is protected by copyright. All rights reserved.

Concepts: All rights reserved, Differential calculus, Slope, Gradient, Epilepsy, Seizure, Hippocampus, Copyright


Open-cut coal mining in Queensland results in the formation of extensive saline overburden spoil-piles with steep slopes at the angle of repose (approximately 75% or 37o). These spoil-piles are generally found in multiple rows, several kilometers in length and heights of up to 50 or 60 m above the original landscape. They are highly dispersive and erodible. Legislation demands that these spoil piles be rehabilitated to minimize on-site and off-site discharges of sediment and salt into the surrounding environment. To achieve this, the steep slopes must be reduced, stabilized against erosion, covered with topsoil and re-vegetated. Key design criteria (slope gradient, slope length and vegetation cover) are required for the construction of post-mining landscapes that will result in acceptable erosion rates. A novel user-friendly hillslope computer model MINErosion 3.4 was developed that can accurately predict potential erosion rates from field scale hillslopes using parameters measured with a 3m laboratory tilting flume-rainfall simulator or using routinely measured soil physical and chemical properties. This model links MINErosion 2 with a novel consolidation and above ground vegetation cover factors, to the RUSLE and MUSLE equations to predict the mean annual and storm event erosion rates. The RUSLE-based prediction of the mean annual erosion rates allow minesites to derive the key design criteria of slope length, slope gradient and vegetation cover that would lead to acceptable erosion rates. The MUSLE-based prediction of storm event erosion rates will be useful as input into risk analysis of potential damage from erosion. MINErosion 3.4 was validated against erosion measured on 20 m field erosion plots established on post-mining landscapes at the Oakey Creek and Curragh coalmines, as well as on 120 and 70 m erosion plots on postmining landscapes at Kidston Gold Mine.

Concepts: Units of measurement, Road, Coal mining, Differential calculus, Grade, Erosion, Gradient, Slope


Cathode buffer layers (CBLs) can effectively further the efficiency of polymer solar cells (PSCs), after optimization of the active layer. Hidden between the active layer and cathode of the inverted PSC device configuration is the critical yet often unattended vertical diffusion of the active layer components across CBL. Here, a novel methodology of contrast variation with neutron and anomalous X-ray reflectivity to map the multicomponent depth compositions of inverted PSCs, covering from the active layer surface down to the bottom of the ZnO-based CBL, is developed. Uniquely revealed for a high-performance model PSC are the often overlooked porosity distributions of the ZnO-based CBL and the differential diffusions of the polymer PTB7-Th and fullerene derivative PC71BM of the active layer into the CBL. Interface modification of the ZnO-based CBL with fullerene derivative PCBEOH for size-selective nanochannels can selectively improve the diffusion of PC71BM more than that of the polymer. The deeper penetration of PC71BM establishes a gradient distribution of fullerene derivatives over the ZnO/PCBE-OH CBL, resulting in markedly improved electron mobility and device efficiency of the inverted PSC. The result suggests a new CBL design concept of progressive matching of the conduction bands.

Concepts: Slope, Photovoltaics, X-ray, Differential calculus, Marketing, Derivative, Electron, Solar cell