Discover the most talked about and latest scientific content & concepts.

Concept: Dichroism


A new class of photosensitive compounds generates optical anisotropy comparable to azobenzene systems upon irradiation with linearly polarized light, but, in contrast to these systems, the new photorotor system does not absorb in the visible range. High values of dichroism and birefringence are induced and in the case of LC polymers the light induced order can be amplified by self-organization.

Concepts: Optics, Electromagnetic radiation, Cosmic microwave background radiation, Polarization, Birefringence, Dichroism, Optical rotation


Semiconductors with chiral geometries at the nanoscale and mesoscale provide a rich materials platform for polarization optics, photocatalysis, and biomimetics. Unlike metallic and organic optical materials, the relationship between the geometry of chiral semiconductors and their chiroptical properties remains, however, vague. Homochiral ensembles of semiconductor helices with defined geometries open the road to understanding complex relationships between geometrical parameters and chiroptical properties of semiconductor materials. We show that semiconductor helices can be prepared with an absolute yield of ca 0.1% and an enantiomeric excess (e.e.) of 98% or above from cysteine-stabilized cadmium telluride nanoparticles (CdTe NPs) dispersed in methanol. This high e.e. for a spontaneously occurring chemical process is attributed to chiral self-sorting based on the thermodynamic preference of NPs to assemble with those of the same handedness. The dispersions of homochiral self-assembled helices display broadband visible and near-infrared (Vis-NIR) polarization rotation with anisotropy (g) factors approaching 0.01. Calculated circular dichroism (CD) spectra accurately reproduced experimental CD spectra and gave experimentally validated spectral predictions for different geometrical parameters enabling de novo design of chiroptical semiconductor materials. Unlike metallic, ceramic, and polymeric helices that serve predominantly as scatterers, chiroptical properties of semiconductor helices have nearly equal contribution of light absorption and scattering, which is essential for device-oriented, field-driven light modulation. Deconstruction of a helix into a series of nanorods provides a simple model for the light-matter interaction and chiroptical activity of helices. This study creates a framework for further development of polarization-based optics toward biomedical applications, telecommunications, and hyperspectral imaging.

Concepts: Optics, Chirality, Cadmium, Solar cell, Electrical conductivity, Tellurium, Circular dichroism, Dichroism


Like many animals, humans are sensitive to the polarization of light. We can detect the angle of polarization using an entoptic phenomenon called Haidinger’s brushes, which is mediated by dichroic carotenoids in the macula lutea. While previous studies have characterized the spectral sensitivity of Haidinger’s brushes, other aspects remain unexplored. We developed a novel methodology for presenting gratings in polarization-only contrast at varying degrees of polarization in order to measure the lower limits of human polarized light detection. Participants were, on average, able to perform the task down to a threshold of 56%, with some able to go as low as 23%. This makes humans the most sensitive vertebrate tested to date. Additionally, we quantified a nonlinear relationship between presented and perceived polarization angle when an observer is presented with a rotatable polarized light field. This result confirms a previous theoretical prediction of how uniaxial corneal birefringence impacts the perception of Haidinger’s brushes. The rotational dynamics of Haidinger’s brushes were then used to calculate corneal retardance. We suggest that psychophysical experiments, based upon the perception of polarized light, are amenable to the production of affordable technologies for self-assessment and longitudinal monitoring of visual dysfunctions such as age-related macular degeneration.

Concepts: Optics, Macular degeneration, Polarization, Birefringence, Dichroism, Polarizer, Haidinger's brush


The field of valleytronics has promised greater control of electronic and spintronic systems with an additional valley degree of freedom. However, conventional and two-dimensional valleytronic systems pose practical challenges in the utilization of this valley degree of freedom. Here we show experimental evidences of the valley effect in a bulk, ambient, and bias-free model system of Tin(II) sulfide. We elucidate the direct access and identification of different sets of valleys, based primarily on the selectivity in absorption and emission of linearly polarized light by optical reflection/transmission and photoluminescence measurements, and demonstrate strong optical dichroic anisotropy of up to 600% and nominal polarization degrees of up to 96% for the two valleys with band-gap values 1.28 and 1.48 eV, respectively; the ease of valley selection further manifested in their non-degenerate nature. Such discovery enables a new platform for better access and control of valley polarization.

Concepts: Optics, Fundamental physics concepts, Light, Electromagnetic radiation, Polarization, Birefringence, Dichroism


Natural light-harvesting systems spatially organize densely packed chromophore aggregates using rigid protein scaffolds to achieve highly efficient, directed energy transfer. Here, we report a synthetic strategy using rigid DNA scaffolds to similarly program the spatial organization of densely packed, discrete clusters of cyanine dye aggregates with tunable absorption spectra and strongly coupled exciton dynamics present in natural light-harvesting systems. We first characterize the range of dye-aggregate sizes that can be templated spatially by A-tracts of B-form DNA while retaining coherent energy transfer. We then use structure-based modelling and quantum dynamics to guide the rational design of higher-order synthetic circuits consisting of multiple discrete dye aggregates within a DX-tile. These programmed circuits exhibit excitonic transport properties with prominent circular dichroism, superradiance, and fast delocalized exciton transfer, consistent with our quantum dynamics predictions. This bottom-up strategy offers a versatile approach to the rational design of strongly coupled excitonic circuits using spatially organized dye aggregates for use in coherent nanoscale energy transport, artificial light-harvesting, and nanophotonics.

Concepts: Time, Protein, Photon, Optics, Physics, Circular dichroism, Dichroism, Circuit


The vast majority of biologically active compounds, ranging from amino acids to essential nutrients such as glucose, possess intrinsic handedness. This in turn gives rise to chiral optical properties that provide a basis for detecting and quantifying enantio-specific concentrations of these molecules. However, traditional chiroptical spectroscopy and imaging techniques require cascading of multiple optical components in sophisticated setups. Here, we present a planar lens with an engineered dispersive response, which simultaneously forms two images with opposite helicity of an object within the same field-of-view. In this way, chiroptical properties can be probed across the visible spectrum using only the lens and a camera without the addition of polarizers or dispersive optical devices. We map the circular dichroism of the exoskeleton of a chiral beetle Chrysina gloriosa, which is known to exhibit high reflectivity of left-circularly polarized light, with high spatial resolution limited by the numerical aperture of the planar lens. Our results demonstrate the potential of metasurfaces in realizing a compact and multifunctional device with unprecedented imaging capabilities.

Concepts: Optics, Light, Electromagnetic radiation, Polarization, Birefringence, Circular polarization, Dichroism


Plasmonic heterostructures are deterministically constructed in organized arrays through chemical pattern directed assembly, a combination of top-down lithography and bottom-up assembly, and by the sequential immobilization of gold nanoparticles of three different sizes onto chemically patterned surfaces using tailored interaction potentials. These spatially addressable plasmonic chain nanostructures demonstrate localization of linear and nonlinear optical fields as well as nonlinear circular dichroism.

Concepts: Nanoparticle, Optics, Chemical substance, Nanomaterials, Gold, Circular polarization, Dichroism, Parsing


Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses. Many conventional dielectric coatings rely on Fabry-Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5-20 nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery.

Concepts: Optics, Light, Electromagnetic radiation, Wavelength, Visible spectrum, Dichroism, Optical coating, Dichroic prism


Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm(-1)) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

Concepts: Optics, Chirality, Left-handedness, Polarization, Circular polarization, Circular dichroism, Dichroism, Handedness


Ditopic binding of various dinitrogen compounds to three bisporphyrin molecular tweezers with spacers of varying conformational rigidity, incorporating the planar enediyne (1), the helical stiff stilbene (2), or the semi-rigid glycoluril motif fused to the porphyrins (3), are compared. Binding constants Ka = 10⁴-10⁶ M(-1) reveal subtle differences between these tweezers, that are discussed in terms of porphyrin dislocation modes. Exciton coupled circular dichroism (ECCD) of complexes with chiral dinitrogen guests provides experimental evidence for the conformational properties of the tweezers. The results are further supported and rationalized by conformational analysis.

Concepts: Stereochemistry, Chemistry, Supramolecular chemistry, Circular dichroism, Porphyrin, Dichroism, Host-guest chemistry, Porphyria