SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Diabetes mellitus type 1

120

Novel interventions that reestablish endogenous insulin secretion and thereby halt progressive end-organ damage and prolong survival of patients with autoimmune Type 1 diabetes mellitus (T1DM) are urgently needed. While this is currently accomplished with allogeneic pancreas or islet transplants, their utility is significantly limited by both the scarcity of organ donors and life-long need for often-toxic antirejection drugs. Coadministering islets with bone marrow-derived mesenchymal stem cells (MSCs) that exert robust immune-modulating, anti-inflammatory, anti-apoptotic, and angiogenic actions, improves intrahepatic islet survival and function. Encapsulation of insulin-producing cells to prevent immune destruction has shown both promise and failures. Recently, stem cell-derived insulin secreting β-like cells induced euglycemia in diabetic animals, although their clinical use would still require encapsulation or anti-rejection drugs. Instead of focusing on further improvements in islet transplantation, we demonstrate here that the intraperitoneal administration of islet-sized “Neo-Islets” (NIs), generated by in vitro coaggregation of allogeneic, culture-expanded islet cells with high numbers of immuno-protective and cyto-protective MSCs, resulted in their omental engraftment in immune-competent, spontaneously diabetic nonobese diabetic (NOD) mice. This achieved long-term glycemic control without immunosuppression and without hypoglycemia. In preparation for an Food and Drug Administration-approved clinical trial in dogs with T1DM, we show that treatment of streptozotocin-diabetic NOD/severe combined immunodeficiency mice with identically formed canine NIs produced durable euglycemia, exclusively mediated by dog-specific insulin. We conclude that this novel technology has significant translational relevance for canine and potentially clinical T1DM as it effectively addresses both the organ donor scarcity (>80 therapeutic NI doses/donor pancreas can be generated) and completely eliminates the need for immunosuppression. Stem Cells Translational Medicine 2017.

Concepts: Pancreas, Glucagon, Diabetes mellitus type 1, Organ transplant, Islets of Langerhans, Diabetes, Diabetes mellitus, Insulin

112

The artificial pancreas (closed-loop system) addresses the unmet clinical need for improved glucose control whilst reducing the burden of diabetes self-care in type 1 diabetes. Glucose-responsive insulin delivery above and below a preset insulin amount informed by sensor glucose readings differentiates closed-loop systems from conventional, threshold-suspend and predictive-suspend insulin pump therapy. Insulin requirements in type 1 diabetes can vary between one-third-threefold on a daily basis. Closed-loop systems accommodate these variations and mitigate the risk of hypoglycaemia associated with tight glucose control. In this review we focus on the progress being made in the development and evaluation of closed-loop systems in outpatient settings. Randomised transitional studies have shown feasibility and efficacy of closed-loop systems under supervision or remote monitoring. Closed-loop application during free-living, unsupervised conditions by children, adolescents and adults compared with sensor-augmented pumps have shown improved glucose outcomes, reduced hypoglycaemia and positive user acceptance. Innovative approaches to enhance closed-loop performance are discussed and we also present the outlook and strategies used to ease clinical adoption of closed-loop systems.

Concepts: Closed loop, Control theory, Diabetes, Glucagon, Diabetes mellitus type 1, Insulin pump, Diabetes mellitus, Insulin

83

Background The feasibility, safety, and efficacy of prolonged use of an artificial beta cell (closed-loop insulin-delivery system) in the home setting have not been established. Methods In two multicenter, crossover, randomized, controlled studies conducted under free-living home conditions, we compared closed-loop insulin delivery with sensor-augmented pump therapy in 58 patients with type 1 diabetes. The closed-loop system was used day and night by 33 adults and overnight by 25 children and adolescents. Participants used the closed-loop system for a 12-week period and sensor-augmented pump therapy (control) for a similar period. The primary end point was the proportion of time that the glucose level was between 70 mg and 180 mg per deciliter for adults and between 70 mg and 145 mg per deciliter for children and adolescents. Results Among adults, the proportion of time that the glucose level was in the target range was 11.0 percentage points (95% confidence interval [CI], 8.1 to 13.8) greater with the use of the closed-loop system day and night than with control therapy (P<0.001). The mean glucose level was lower during the closed-loop phase than during the control phase (difference, -11 mg per deciliter; 95% CI, -17 to -6; P<0.001), as were the area under the curve for the period when the glucose level was less than 63 mg per deciliter (39% lower; 95% CI, 24 to 51; P<0.001) and the mean glycated hemoglobin level (difference, -0.3%; 95% CI, -0.5 to -0.1; P=0.002). Among children and adolescents, the proportion of time with the nighttime glucose level in the target range was higher during the closed-loop phase than during the control phase (by 24.7 percentage points; 95% CI, 20.6 to 28.7; P<0.001), and the mean nighttime glucose level was lower (difference, -29 mg per deciliter; 95% CI, -39 to -20; P<0.001). The area under the curve for the period in which the day-and-night glucose levels were less than 63 mg per deciliter was lower by 42% (95% CI, 4 to 65; P=0.03). Three severe hypoglycemic episodes occurred during the closed-loop phase when the closed-loop system was not in use. Conclusions Among patients with type 1 diabetes, 12-week use of a closed-loop system, as compared with sensor-augmented pump therapy, improved glucose control, reduced hypoglycemia, and, in adults, resulted in a lower glycated hemoglobin level. (Funded by the JDRF and others; AP@home04 and APCam08 ClinicalTrials.gov numbers, NCT01961622 and NCT01778348 .).

Concepts: Glycated hemoglobin, Glycation, Diabetes, Diabetes mellitus type 1, Blood sugar, Hypoglycemia, Insulin, Diabetes mellitus

80

Absorption of current rapid-acting insulins is too slow for patients with diabetes mellitus to achieve optimal postprandial glucose control. Faster-acting insulin aspart (faster aspart) is insulin aspart in a new formulation with faster early absorption. We compared the pharmacokinetic/pharmacodynamic properties of faster aspart and insulin aspart across a clinically relevant dose range.

Concepts: Obesity, Pharmacokinetics, Diabetes mellitus type 2, Glucose, Nutrition, Diabetes mellitus type 1, Insulin, Diabetes mellitus

78

Major histocompatibility (MHC) class II molecules are strongly associated with many autoimmune disorders. In type 1 diabetes, the DQ8 molecule is common, confers significant disease risk and is involved in disease pathogenesis. We hypothesized blocking DQ8 antigen presentation would provide therapeutic benefit by preventing recognition of self-peptides by pathogenic T cells. We used the crystal structure of DQ8 to select drug-like small molecules predicted to bind structural pockets in the MHC antigen-binding cleft. A limited number of the predicted compounds inhibited DQ8 antigen presentation in vitro with one compound preventing insulin autoantibody production and delaying diabetes onset in an animal model of spontaneous autoimmune diabetes. An existing drug of similar structure, methyldopa, specifically blocked DQ8 in recent-onset patients with type 1 diabetes along with reducing inflammatory T cell responses toward insulin, highlighting the relevance of blocking disease-specific MHC class II antigen presentation to treat autoimmunity.

Concepts: Atom, Chemical compound, Adaptive immune system, MHC class I, Diabetes mellitus type 1, Diabetes mellitus, Major histocompatibility complex, Immune system

74

To evaluate the efficacy and safety of artificial pancreas treatment in non-pregnant outpatients with type 1 diabetes.

Concepts: Diabetes, Diabetes mellitus type 1, Insulin

70

Endogenous cannabinoids (endocannabinoids) are small molecules biosynthesized from membrane glycerophospholipid. Anandamide (AEA) is an endogenous intestinal cannabinoid that controls appetite and energy balance by engagement of the enteric nervous system through cannabinoid receptors. Here, we uncover a role for AEA and its receptor, cannabinoid receptor 2 (CB2), in the regulation of immune tolerance in the gut and the pancreas. This work demonstrates a major immunological role for an endocannabinoid. The pungent molecule capsaicin (CP) has a similar effect as AEA; however, CP acts by engagement of the vanilloid receptor TRPV1, causing local production of AEA, which acts through CB2. We show that the engagement of the cannabinoid/vanilloid receptors augments the number and immune suppressive function of the regulatory CX3CR1(hi) macrophages (Mϕ), which express the highest levels of such receptors among the gut immune cells. Additionally, TRPV1(-/-) or CB2(-/-) mice have fewer CX3CR1(hi) Mϕ in the gut. Treatment of mice with CP also leads to differentiation of a regulatory subset of CD4(+) cells, the Tr1 cells, in an IL-27-dependent manner in vitro and in vivo. In a functional demonstration, tolerance elicited by engagement of TRPV1 can be transferred to naïve nonobese diabetic (NOD) mice [model of type 1 diabetes (T1D)] by transfer of CD4(+) T cells. Further, oral administration of AEA to NOD mice provides protection from T1D. Our study unveils a role for the endocannabinoid system in maintaining immune homeostasis in the gut/pancreas and reveals a conversation between the nervous and immune systems using distinct receptors.

Concepts: Diabetes, Diabetes mellitus type 1, Receptor, Anandamide, Cannabinoids, Immunology, Cannabinoid receptor, Immune system

66

The aim of the present study was to examine whether a replacement diet with products made with organic ancient khorasan wheat could provide additive protective effects in reducing glucose, insulin, lipid and inflammatory risk factors, and in restoring blood redox balance in type 2 diabetes mellitus (T2DM) patients compared to diet with product made with modern organic wheat.

Concepts: Metabolic syndrome, Insulin resistance, Diabetes mellitus type 1, Diabetes mellitus type 2, Obesity, Insulin, Diabetes mellitus

65

It is essential to anticipate and limit the social, economic and sanitary cost of type 2 diabetes (T2D), which is in constant progression worldwide. When blood glucose targets are not achieved with diet and lifestyle intervention, insulin is recommended whether or not the patient is already taking hypoglycaemic drugs. However, the benefit/risk balance of insulin remains controversial. Our aim was to determine the efficacy and safety of insulin vs. hypoglycaemic drugs or diet/placebo on clinically relevant endpoints.

Concepts: Insulin resistance, Diabetes mellitus type 1, Sulfonylurea, Obesity, Diabetes mellitus type 2, Randomized controlled trial, Insulin, Diabetes mellitus

58

Background The threshold-suspend feature of sensor-augmented insulin pumps is designed to minimize the risk of hypoglycemia by interrupting insulin delivery at a preset sensor glucose value. We evaluated sensor-augmented insulin-pump therapy with and without the threshold-suspend feature in patients with nocturnal hypoglycemia. Methods We randomly assigned patients with type 1 diabetes and documented nocturnal hypoglycemia to receive sensor-augmented insulin-pump therapy with or without the threshold-suspend feature for 3 months. The primary safety outcome was the change in the glycated hemoglobin level. The primary efficacy outcome was the area under the curve (AUC) for nocturnal hypoglycemic events. Two-hour threshold-suspend events were analyzed with respect to subsequent sensor glucose values. Results A total of 247 patients were randomly assigned to receive sensor-augmented insulin-pump therapy with the threshold-suspend feature (threshold-suspend group, 121 patients) or standard sensor-augmented insulin-pump therapy (control group, 126 patients). The changes in glycated hemoglobin values were similar in the two groups. The mean AUC for nocturnal hypoglycemic events was 37.5% lower in the threshold-suspend group than in the control group (980±1200 mg per deciliter [54.4±66.6 mmol per liter]×minutes vs. 1568±1995 mg per deciliter [87.0±110.7 mmol per liter]×minutes, P<0.001). Nocturnal hypoglycemic events occurred 31.8% less frequently in the threshold-suspend group than in the control group (1.5±1.0 vs. 2.2±1.3 per patient-week, P<0.001). The percentages of nocturnal sensor glucose values of less than 50 mg per deciliter (2.8 mmol per liter), 50 to less than 60 mg per deciliter (3.3 mmol per liter), and 60 to less than 70 mg per deciliter (3.9 mmol per liter) were significantly reduced in the threshold-suspend group (P<0.001 for each range). After 1438 instances at night in which the pump was stopped for 2 hours, the mean sensor glucose value was 92.6±40.7 mg per deciliter (5.1±2.3 mmol per liter). Four patients (all in the control group) had a severe hypoglycemic event; no patients had diabetic ketoacidosis. Conclusions This study showed that over a 3-month period the use of sensor-augmented insulin-pump therapy with the threshold-suspend feature reduced nocturnal hypoglycemia, without increasing glycated hemoglobin values. (Funded by Medtronic MiniMed; ASPIRE ClinicalTrials.gov number, NCT01497938 .).

Concepts: Hypoglycemia, Blood sugar, Glucose meter, Diabetes mellitus type 1, Diabetes, Hyperglycemia, Insulin, Diabetes mellitus