Discover the most talked about and latest scientific content & concepts.

Concept: Developed environments


Studies have shown that natural environments can enhance health and here we build upon that work by examining the associations between comprehensive greenspace metrics and health. We focused on a large urban population center (Toronto, Canada) and related the two domains by combining high-resolution satellite imagery and individual tree data from Toronto with questionnaire-based self-reports of general health perception, cardio-metabolic conditions and mental illnesses from the Ontario Health Study. Results from multiple regressions and multivariate canonical correlation analyses suggest that people who live in neighborhoods with a higher density of trees on their streets report significantly higher health perception and significantly less cardio-metabolic conditions (controlling for socio-economic and demographic factors). We find that having 10 more trees in a city block, on average, improves health perception in ways comparable to an increase in annual personal income of $10,000 and moving to a neighborhood with $10,000 higher median income or being 7 years younger. We also find that having 11 more trees in a city block, on average, decreases cardio-metabolic conditions in ways comparable to an increase in annual personal income of $20,000 and moving to a neighborhood with $20,000 higher median income or being 1.4 years younger.

Concepts: Demography, City, Urban area, Developed environments, Canada, São Paulo, Urban planning, Village


Timings of human activities are marked by circadian clocks which in turn are entrained to different environmental signals. In an urban environment the presence of artificial lighting and various social cues tend to disrupt the natural entrainment with the sunlight. However, it is not completely understood to what extent this is the case. Here we exploit the large-scale data analysis techniques to study the mobile phone calling activity of people in large cities to infer the dynamics of urban daily rhythms. From the calling patterns of about 1,000,000 users spread over different cities but lying inside the same time-zone, we show that the onset and termination of the calling activity synchronizes with the east-west progression of the sun. We also find that the onset and termination of the calling activity of users follows a yearly dynamics, varying across seasons, and that its timings are entrained to solar midnight. Furthermore, we show that the average mid-sleep time of people living in urban areas depends on the age and gender of each cohort as a result of biological and social factors.

Concepts: Sun, City, Urban area, Developed environments


Urban green mapping has become an operational task in city planning, urban land management, and quality of life assessments. As a multi-dimensional, integrative concept, urban green comprising several ecological, socio-economic, and policy-related aspects. In this paper, the author advances the representation of urban green by deriving scale-adapted, policy-relevant units. These so-called geons represent areas of uniform green valuation under certain size and homogeneity constraints in a spatially explicit representation. The study accompanies a regular monitoring scheme carried out by the urban municipality of the city of Salzburg, Austria, using optical satellite data. It was conducted in two stages, namely SBG_QB (10.2 km², QuickBird data from 2005) and SBG_WV (140 km², WorldView-2 data from 2010), within the functional urban area of Salzburg. The geon delineation was validated by several quantitative measures and spatial analysis techniques, as well as ground documentation, including panorama photographs and visual interpretation. The spatial association pattern was assessed by calculating Global Moran’s I with incremental search distances. The final geonscape, consisting of 1083 units with an average size of 13.5 ha, was analyzed by spatial metrics. Finally, categories were derived for different types of functional geons. Future research paths and improvements to the described strategy are outlined.

Concepts: Physics, City, Urban area, Developed environments, Urban planning, Town, Spatial data analysis, Salzburg


We analyze the entire publication database of the American Physical Society generating longitudinal (50 years) citation networks geolocalized at the level of single urban areas. We define the knowledge diffusion proxy, and scientific production ranking algorithms to capture the spatio-temporal dynamics of Physics knowledge worldwide. By using the knowledge diffusion proxy we identify the key cities in the production and consumption of knowledge in Physics as a function of time. The results from the scientific production ranking algorithm allow us to characterize the top cities for scholarly research in Physics. Although we focus on a single dataset concerning a specific field, the methodology presented here opens the path to comparative studies of the dynamics of knowledge across disciplines and research areas.

Concepts: Scientific method, Mathematics, Epistemology, City, Urban area, Developed environments, Science, American Physical Society


Sustainable development efforts in urban areas often focus on understanding and managing factors that influence all aspects of health and wellbeing. Research has shown that public parks and green space provide a variety of physical, psychological, and social benefits to urban residents, but few studies have examined the influence of parks on comprehensive measures of subjective wellbeing at the city level. Using 2014 data from 44 U.S. cities, we evaluated the relationship between urban park quantity, quality, and accessibility and aggregate self-reported scores on the Gallup-Healthways Wellbeing Index (WBI), which considers five different domains of wellbeing (e.g., physical, community, social, financial, and purpose). In addition to park-related variables, our best-fitting OLS regression models selected using an information theory approach controlled for a variety of other typical geographic and socio-demographic correlates of wellbeing. Park quantity (measured as the percentage of city area covered by public parks) was among the strongest predictors of overall wellbeing, and the strength of this relationship appeared to be driven by parks' contributions to physical and community wellbeing. Park quality (measured as per capita spending on parks) and accessibility (measured as the overall percentage of a city’s population within ½ mile of parks) were also positively associated with wellbeing, though these relationships were not significant. Results suggest that expansive park networks are linked to multiple aspects of health and wellbeing in cities and positively impact urban quality of life.

Concepts: United States, City, Urban area, Developed environments, Park, Urban park, Village, Town


Urbanization is a potential threat to mental health and well-being. Cross-sectional evidence suggests that living closer to urban green spaces, such as parks, is associated with lower mental distress. However, earlier research was unable to control for time-invariant heterogeneity (e.g., personality) and focused on indicators of poor psychological health. The current research advances the field by using panel data from over 10,000 individuals to explore the relation between urban green space and well-being (indexed by ratings of life satisfaction) and between urban green space and mental distress (indexed by General Health Questionnaire scores) for the same people over time. Controlling for individual and regional covariates, we found that, on average, individuals have both lower mental distress and higher well-being when living in urban areas with more green space. Although effects at the individual level were small, the potential cumulative benefit at the community level highlights the importance of policies to protect and promote urban green spaces for well-being.

Concepts: Psychology, City, Urban area, Developed environments, Urbanization, Cross-sectional data, Village, Panel data


OBJECTIVE: To examine the distribution of heat risk-related land cover (HRRLC) characteristics across racial/ethnic groups and degrees of residential segregation. METHODS: Block group-level tree canopy and impervious surface estimates were derived from the 2001 National Land Cover Dataset for densely populated urban areas of the United States and Puerto Rico, and linked to demographic characteristics from the 2000 Census. Racial/ethnic groups in a given block group were considered to live in HRRLC if at least half their population experienced the absence of tree canopy and at least half of the ground covered by impervious surface (roofs, driveways, sidewalks, roads). Residential segregation was characterized for metropolitan areas in the United States and Puerto Rico using the multigroup dissimilarity index. RESULTS: After adjusting for ecoregion and precipitation, and holding segregation level constant, non-Hispanic blacks were 52% more likely (95% confidence interval (CI): 37% to 69%), non-Hispanic Asians 32% more likely (95% CI: 18% to 47%), and Hispanics 21% more likely (95% CI: 8% to 35%) to live in HRRLC conditions compared to non-Hispanic whites. Within each racial/ethnic group, HRRLC conditions increased with increasing degrees of metropolitan area-level segregation. Further adjustment for home ownership and poverty did not substantially alter these results, but adjustment for population density and metropolitan area population attenuated the segregation effects, suggesting a mediating or confounding role. CONCLUSIONS: Land cover was associated with segregation within each racial/ethnic group, which may be partially explained by the concentration of racial/ethnic minorities into densely populated neighborhoods within larger, more segregated cities. In anticipation of greater frequency and duration of extreme heat events, climate change adaptation strategies, such as planting trees in urban areas, should explicitly incorporate an environmental justice framework that addresses racial/ethnic disparities in HRRLC.

Concepts: Demography, Population, United States, City, Urban area, Developed environments, Population density, Metropolitan area


The difference in land surface temperature (LST) between an urban region and its nearby non-urban region, known as surface urban heat island intensity (SUHII), is usually positive as reported in earlier studies. India has experienced unprecedented urbanization over recent decades with an urban population of 380 million. Here, we present the first study of the diurnal and seasonal characteristics of SUHII in India. We found negative SUHII over a majority of urban areas during daytime in pre-monsoon summer (MAM), contrary to the expected impacts of urbanization. This unexpected pattern is associated with low vegetation in non-urban regions during dry pre-monsoon summers, leading to reduced evapotranspiration (ET). During pre-monsoon summer nights, a positive SUHII occurs when urban impacts are prominent. Winter daytime SUHII becomes positive in Indo-Gangetic plain. We attribute such diurnal and seasonal behaviour of SUHII to the same of the differences in ET between urban and non-urban regions. Higher LST in non-urban regions during pre-monsoon summer days results in intensified heatwaves compared to heatwaves in cities, in contrast to presumptions made in the literature. These observations highlight the need for re-evaluation of SUHII in India for climate adaptation, heat stress mitigation, and analysis of urban micro-climates.

Concepts: City, Urban area, Developed environments, Climate change, Urbanization, Urban heat island, Heat wave


Urban areas consume more than 66% of the world’s energy and generate more than 70% of global greenhouse gas emissions. With the world’s population expected to reach 10 billion by 2100, nearly 90% of whom will live in urban areas, a critical question for planetary sustainability is how the size of cities affects energy use and carbon dioxide (CO2) emissions. Are larger cities more energy and emissions efficient than smaller ones? Do larger cities exhibit gains from economies of scale with regard to emissions? Here we examine the relationship between city size and CO2 emissions for U.S. metropolitan areas using a production accounting allocation of emissions. We find that for the time period of 1999-2008, CO2 emissions scale proportionally with urban population size. Contrary to theoretical expectations, larger cities are not more emissions efficient than smaller ones.

Concepts: Carbon dioxide, City, Urban area, Developed environments, Natural gas, Greenhouse gas, Emission standard, Metropolitan area


INTRODUCTION: In order to study social health inequalities, contextual (or ecologic) data may constitute an appropriate alternative to individual socioeconomic characteristics. Indices can be used to summarize the multiple dimensions of the neighborhood socioeconomic status. This work proposes a statistical procedure to create a neighborhood socioeconomic index. METHODS: The study setting is composed of three French urban areas. Socioeconomic data at the census block scale come from the 1999 census. Successive principal components analyses are used to select variables and create the index. Both metropolitan area-specific and global indices are tested and compared. Socioeconomic categories are drawn with hierarchical clustering as a reference to determine “optimal” thresholds able to create categories along a one-dimensional index. RESULTS: Among the twenty variables finally selected in the index, 15 are common to the three metropolitan areas. The index explains at least 57% of the variance of these variables in each metropolitan area, with a contribution of more than 80% of the 15 common variables. CONCLUSIONS: The proposed procedure is statistically justified and robust. It can be applied to multiple geographical areas or socioeconomic variables and provides meaningful information to public health bodies. We highlight the importance of the classification method. We propose an R package in order to use this procedure.

Concepts: Demography, City, Urban area, Developed environments, Metropolitan area