SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Depolarization

30

During navigation, grid cells increase their spike rates in firing fields arranged on a markedly regular triangular lattice, whereas their spike timing is often modulated by theta oscillations. Oscillatory interference models of grid cells predict theta amplitude modulations of membrane potential during firing field traversals, whereas competing attractor network models predict slow depolarizing ramps. Here, using in vivo whole-cell recordings, we tested these models by directly measuring grid cell intracellular potentials in mice running along linear tracks in virtual reality. Grid cells had large and reproducible ramps of membrane potential depolarization that were the characteristic signature tightly correlated with firing fields. Grid cells also demonstrated intracellular theta oscillations that influenced their spike timing. However, the properties of theta amplitude modulations were not consistent with the view that they determine firing field locations. Our results support cellular and network mechanisms in which grid fields are produced by slow ramps, as in attractor models, whereas theta oscillations control spike timing.

Concepts: Cell membrane, Organelle, Neurology, Phase, Membrane potential, Field, Potential, Depolarization

14

Understanding mechanisms that orchestrate cell behavior into appropriately patterned tissues and organs within the organism is an essential element of preventing, detecting and treating cancer. Bioelectric signals (resting transmembrane voltage potential gradients in all cells) underlie an important and broadly conserved set of control mechanisms that regulate pattern formation. We tested the role of transmembrane potential in tumorigenesis mediated by canonical oncogenes in Xenopus laevis. Depolarized membrane potential (Vmem) was a characteristic of induced tumor-like structures (ITLSs) generated by overexpression of Gli1, Kras(G12D), Xrel3 or p53(Trp248). This bioelectric signature was also present in precursor ITLS sites. Vmem is a bioelectric marker that reveals ITLSs before they become histologically and morphologically apparent. Moreover, voltage was functionally important: overexpression of hyperpolarizing ion transporters caused a return to normal Vmem and significantly reduced ITLS formation in vivo. To characterize the molecular mechanism by which Vmem change regulates ITLS phenotypes, we performed a suppression screen. Vmem hyperpolarization was transduced into downstream events via Vmem-regulated activity of SLC5A8, a sodium-butyrate exchanger previously implicated in human cancer. These data indicate that butyrate, a histone deacetylase (HDAC) inhibitor, might be responsible for transcriptional events that mediate suppression of ITLSs by hyperpolarization. Vmem is a convenient cellular parameter by which tumors induced by human oncogenes can be detected in vivo and represents a new diagnostic modality. Moreover, control of resting membrane potential is functionally involved in the process by which oncogene-bearing cells depart from normal morphogenesis programs to form tumors. Modulation of Vmem levels is a novel and promising strategy for tumor normalization.

Concepts: DNA, Gene expression, Cancer, Action potential, Membrane potential, Postsynaptic potential, Resting potential, Depolarization

4

The anticonvulsant Retigabine is a KV7 channel agonist used to treat hyperexcitability disorders in humans. Retigabine shifts the voltage dependence for activation of the heteromeric KV7.2/KV7.3 channel to more negative potentials, thus facilitating activation. Although the molecular mechanism underlying Retigabine’s action remains unknown, previous studies have identified the pore region of KV7 channels as the drug’s target. This suggested that the Retigabine-induced shift in voltage dependence likely derives from the stabilization of the pore domain in an open (conducting) conformation. Testing this idea, we show that the heteromeric KV7.2/KV7.3 channel has at least two open states, which we named O1 and O2, with O2 being more stable. The O1 state was reached after short membrane depolarizations, whereas O2 was reached after prolonged depolarization or during steady state at the typical neuronal resting potentials. We also found that activation and deactivation seem to follow distinct pathways, suggesting that the KV7.2/KV7.3 channel activity displays hysteresis. As for the action of Retigabine, we discovered that this agonist discriminates between open states, preferentially acting on the O2 state and further stabilizing it. Based on these findings, we proposed a novel mechanism for the therapeutic effect of Retigabine whereby this drug reduces excitability by enhancing the resting potential open state stability of KV7.2/KV7.3 channels. To address this hypothesis, we used a model for action potential (AP) in Xenopus laevis oocytes and found that the resting membrane potential became more negative as a function of Retigabine concentration, whereas the threshold potential for AP firing remained unaltered.

Concepts: Stabilizer, Action potential, Electrophysiology, Membrane potential, Potassium channel, Resting potential, Depolarization, Reversal potential

2

Voltage-gated sodium channel (NaV) mutations cause genetic pain disorders that range from severe paroxysmal pain to a congenital inability to sense pain. Previous studies on NaV1.7 and NaV1.8 established clear relationships between perturbations in channel function and divergent clinical phenotypes. By contrast, studies of NaV1.9 mutations have not revealed a clear relationship of channel dysfunction with the associated and contrasting clinical phenotypes. Here, we have elucidated the functional consequences of a NaV1.9 mutation (L1302F) that is associated with insensitivity to pain. We investigated the effects of L1302F and a previously reported mutation (L811P) on neuronal excitability. In transfected heterologous cells, the L1302F mutation caused a large hyperpolarizing shift in the voltage-dependence of activation, leading to substantially enhanced overlap between activation and steady-state inactivation relationships. In transfected small rat dorsal root ganglion neurons, expression of L1302F and L811P evoked large depolarizations of the resting membrane potential and impaired action potential generation. Therefore, our findings implicate a cellular loss of function as the basis for impaired pain sensation. We further demonstrated that a U-shaped relationship between the resting potential and the neuronal action potential threshold explains why NaV1.9 mutations that evoke small degrees of membrane depolarization cause hyperexcitability and familial episodic pain disorder or painful neuropathy, while mutations evoking larger membrane depolarizations cause hypoexcitability and insensitivity to pain.

Concepts: Nervous system, Neuron, Action potential, Electrophysiology, Sodium channel, Membrane potential, Resting potential, Depolarization

2

Erythromelalgia (EM) is a rare neurovascular disorder characterized by intermittent severe burning pain, erythema and warmth in the extremities upon heat stimuli. To investigate the underlying pathophysiology, peripheral axonal excitability studies were performed and changes with heating and therapy explored. Multiple excitability indices (stimulus-response curve, strength-duration time constant (SDTC), threshold electrotonus and recovery cycle) were investigated in 23(9 EMSCN9A+, 14 EMSCN9A-) genetically characterized EM patients stimulating median motor and sensory axons at the wrist. At rest, EM patients showed a higher threshold and rheobase (P<0.001) compared to controls. Threshold electrotonus and current-voltage relationships demonstrated greater changes of thresholds in both depolarizing and hyperpolarizing preconditioning electrotonus in both EM cohorts compared to controls in sensory axons (P< 0.005). When average temperature was raised from 31.5°C to 36.3°C in EMSCN9A+ patients excitability changes showed depolarization, specifically SDTC significantly increased, in contrast to the effects of temperature previously established in healthy subjects (P<0.05). With treatment, four EMSCN9A+ patients (4/9) reported improvement with Mexiletine, associated with reduction in SDTC in motor and sensory axons. This is the first study of primary EM using threshold tracking techniques to demonstrate alterations in peripheral axonal membrane function. Taken together these changes may be attributed to systemic neurovascular abnormalities in EM, with chronic post-ischaemic resting membrane potential hyperpolarization due to Na/K pump over-activity. With heating, a trigger of acute symptoms, axonal depolarization developed, corresponding to acute axonal ischaemia. The present study has provided novel insights into EM pathophysiology.

Concepts: Nervous system, Neuron, Action potential, Electrophysiology, Heat, Membrane potential, Resting potential, Depolarization

2

Are significant abnormalities in outward (K(+)) conductance and resting membrane potential (Vm) present in the spermatozoa of patients undertaking IVF and ICSI and if so, what is their functional effect on fertilization success?

Concepts: Reproduction, Fertility, Spermatozoon, Membrane biology, Membrane potential, Fertilisation, Resting potential, Depolarization

2

Cytotoxic brain edema triggered by neuronal swelling is the chief cause of mortality following brain trauma and cerebral infarct. Using fluorescence lifetime imaging to analyze contributions of intracellular ionic changes in brain slices, we find that intense Na(+) entry triggers a secondary increase in intracellular Cl(-) that is required for neuronal swelling and death. Pharmacological and siRNA-mediated knockdown screening identified the ion exchanger SLC26A11 unexpectedly acting as a voltage-gated Cl(-) channel that is activated upon neuronal depolarization to membrane potentials lower than -20 mV. Blockade of SLC26A11 activity attenuates both neuronal swelling and cell death. Therefore cytotoxic neuronal edema occurs when sufficient Na(+) influx and depolarization is followed by Cl(-) entry via SLC26A11. The resultant NaCl accumulation causes subsequent neuronal swelling leading to neuronal death. These findings shed light on unique elements of volume control in excitable cells and lay the ground for the development of specific treatments for brain edema.

Concepts: Nervous system, Neuron, Cell membrane, Ion, Membrane potential, Resting potential, Cerebral edema, Depolarization

1

Memantine and ketamine, voltage- and activation-dependent channel blockers of NMDA receptors (NMDARs), have enjoyed a recent resurgence in clinical interest. Steady-state pharmacodynamic differences between these blockers have been reported, but it is unclear whether the compounds differentially affect dynamic physiological signaling. Here we explored non-equilibrium conditions relevant to synaptic transmission in hippocampal networks in dissociated culture and hippocampal slices. Equimolar memantine and ketamine had indistinguishable effects on the following measures: steady-state NMDA currents, NMDAR EPSC decay kinetics, progressive EPSC inhibition during repetitive stimulation, and extrasynaptic NMDAR inhibition. Therapeutic drug efficacy and tolerability of memantine have been attributed to fast kinetics and strong voltage dependence. However, pulse depolarization in drug presence revealed a surprisingly slow and similar time course of equilibration for the two compounds, although memantine produced a more prominent fast component (62 vs. 48%) of re-equilibration. Simulations predicted that low gating efficacy underlies the slow voltage-dependent relief from block. This prediction was empirically supported by faster voltage-dependent blocker re-equilibration with several experimental manipulations of gating efficacy. EPSP-like voltage commands produced drug differences only with large, prolonged depolarizations unlikely to be attained physiologically. In fact, we found no difference between drugs on measures of spontaneous network activity or acute effects on plasticity in hippocampal slices. Despite indistinguishable synaptic pharmacodynamics, ketamine provided significantly greater neuroprotection from damage induced by oxygen glucose deprivation, consistent with the idea that under extreme depolarizing conditions, the biophysical difference between drugs becomes detectable. We conclude that despite subtle differences in voltage dependence, during physiological activity, blocker pharmacodynamics are largely indistinguishable and largely voltage independent.

Concepts: Thermodynamics, Difference, NMDA receptor, Drug addiction, Recreational drug use, Depolarization, NMDA receptor antagonists

1

Neurons in the medial entorhinal cortex exhibit a grid-like spatial pattern of spike rates that has been proposed to represent a neural code for path integration. To understand how grid cell firing arises from the combination of intrinsic conductances and synaptic input in medial entorhinal stellate cells, we performed patch-clamp recordings in mice navigating in a virtual-reality environment. We found that the membrane potential signature of stellate cells during firing field crossings consisted of a slow depolarization driving spike output. This was best predicted by network models in which neurons receive sustained depolarizing synaptic input during a field crossing, such as continuous attractor network models of grid cell firing. Another key feature of the data, phase precession of intracellular theta oscillations and spiking with respect to extracellular theta oscillations, was best captured by an oscillatory interference model. Thus, these findings provide crucial new information for a quantitative understanding of the cellular basis of spatial navigation in the entorhinal cortex.

Concepts: Neuron, Brain, Cell membrane, Action potential, Hippocampus, Cerebellum, Membrane potential, Depolarization

1

Hypokalemic periodic paralysis (HypoPP) is a familial skeletal muscle disorder that presents with recurrent episodes of severe weakness lasting hours to days associated with reduced serum potassium (K+). HypoPP is genetically heterogeneous, with missense mutations of a calcium channel (CaV1.1) or a sodium channel (NaV1.4) accounting for 60% and 20% of cases, respectively. The mechanistic link between CaV1.1 mutations and the ictal loss of muscle excitability during an attack of weakness in HypoPP is unknown. To address this question, we developed a mouse model for HypoPP with a targeted CaV1.1 R528H mutation. The Cav1.1 R528H mice had a HypoPP phenotype for which low K+ challenge produced a paradoxical depolarization of the resting potential, loss of muscle excitability, and weakness. A vacuolar myopathy with dilated transverse tubules and disruption of the triad junctions impaired Ca2+ release and likely contributed to the mild permanent weakness. Fibers from the CaV1.1 R528H mouse had a small anomalous inward current at the resting potential, similar to our observations in the NaV1.4 R669H HypoPP mouse model. This “gating pore current” may be a common mechanism for paradoxical depolarization and susceptibility to HypoPP arising from missense mutations in the S4 voltage sensor of either calcium or sodium channels.

Concepts: Mutation, Action potential, Sodium, Potassium, Ion channels, Point mutation, Channelopathy, Depolarization