SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Dengue fever

357

In early 2015, an outbreak of Zika virus, a flavivirus transmitted by Aedes mosquitoes, was identified in northeast Brazil, an area where dengue virus was also circulating. By September, reports of an increase in the number of infants born with microcephaly in Zika virus-affected areas began to emerge, and Zika virus RNA was identified in the amniotic fluid of two women whose fetuses had been found to have microcephaly by prenatal ultrasound. The Brazil Ministry of Health (MoH) established a task force to investigate the possible association of microcephaly with Zika virus infection during pregnancy and a registry for incident microcephaly cases (head circumference ≥2 standard deviations [SD] below the mean for sex and gestational age at birth) and pregnancy outcomes among women suspected to have had Zika virus infection during pregnancy. Among a cohort of 35 infants with microcephaly born during August-October 2015 in eight of Brazil’s 26 states and reported to the registry, the mothers of all 35 had lived in or visited Zika virus-affected areas during pregnancy, 25 (71%) infants had severe microcephaly (head circumference >3 SD below the mean for sex and gestational age), 17 (49%) had at least one neurologic abnormality, and among 27 infants who had neuroimaging studies, all had abnormalities. Tests for other congenital infections were negative. All infants had a lumbar puncture as part of the evaluation and cerebrospinal fluid (CSF) samples were sent to a reference laboratory in Brazil for Zika virus testing; results are not yet available. Further studies are needed to confirm the association of microcephaly with Zika virus infection during pregnancy and to understand any other adverse pregnancy outcomes associated with Zika virus infection. Pregnant women in Zika virus-affected areas should protect themselves from mosquito bites by using air conditioning, screens, or nets when indoors, wearing long sleeves and pants, using permethrin-treated clothing and gear, and using insect repellents when outdoors. Pregnant and lactating women can use all U.S. Environmental Protection Agency (EPA)-registered insect repellents according to the product label.

Concepts: Pregnancy, Childbirth, Embryo, Fetus, Mosquito, Obstetrics, Dengue fever, Gestational age

299

Zika virus is a flavivirus transmitted primarily by Aedes species mosquitoes, and symptoms of infection can include rash, fever, arthralgia, and conjunctivitis (1).* Zika virus infection during pregnancy is a cause of microcephaly and other severe brain defects (2). Infection has also been associated with Guillain-Barré syndrome (3). In December 2015, Puerto Rico became the first U.S. jurisdiction to report local transmission of Zika virus, with the index patient reporting symptom onset on November 23, 2015 (4). This report provides an update to the epidemiology of and public health response to ongoing Zika virus transmission in Puerto Rico. During November 1, 2015-April 14, 2016, a total of 6,157 specimens from suspected Zika virus-infected patients were evaluated by the Puerto Rico Department of Health (PRDH) and CDC Dengue Branch (which is located in San Juan, Puerto Rico), and 683 (11%) had laboratory evidence of current or recent Zika virus infection by one or more tests: reverse transcription-polymerase chain reaction (RT-PCR) or immunoglobulin M (IgM) enzyme-linked immunosorbent assay (ELISA). Zika virus-infected patients resided in 50 (64%) of 78 municipalities in Puerto Rico. Median age was 34 years (range = 35 days-89 years). The most frequently reported signs and symptoms were rash (74%), myalgia (68%), headache (63%), fever (63%), and arthralgia (63%). There were 65 (10%) symptomatic pregnant women who tested positive by RT-PCR or IgM ELISA. A total of 17 (2%) patients required hospitalization, including 5 (1%) patients with suspected Guillain-Barré syndrome. One (<1%) patient died after developing severe thrombocytopenia. The public health response to the outbreak has included increased laboratory capacity to test for Zika virus infection (including blood donor screening), implementation of enhanced surveillance systems, and prevention activities focused on pregnant women. Vector control activities include indoor and outdoor residual spraying and reduction of mosquito breeding environments focused around pregnant women's homes. Residents of and travelers to Puerto Rico should continue to employ mosquito bite avoidance behaviors, take precautions to reduce the risk for sexual transmission (5), and seek medical care for any acute illness with rash or fever.

Concepts: Antibody, Epidemiology, Mosquito, ELISA, ELISPOT, Aedes, Dengue fever, Eva Engvall

290

Aedes aegypti mosquitoes are responsible for transmitting many medically important viruses such as those that cause Zika and dengue. The inoculation of viruses into mosquito bite sites is an important and common stage of all mosquito-borne virus infections. We show, using Semliki Forest virus and Bunyamwera virus, that these viruses use this inflammatory niche to aid their replication and dissemination in vivo. Mosquito bites were characterized by an edema that retained virus at the inoculation site and an inflammatory influx of neutrophils that coordinated a localized innate immune program that inadvertently facilitated virus infection by encouraging the entry and infection of virus-permissive myeloid cells. Neutrophil depletion and therapeutic blockade of inflammasome activity suppressed inflammation and abrogated the ability of the bite to promote infection. This study identifies facets of mosquito bite inflammation that are important determinants of the subsequent systemic course and clinical outcome of virus infection.

Concepts: Immune system, Inflammation, Infection, Mosquito, Yellow fever, Aedes aegypti, Aedes, Dengue fever

260

Previous experimental studies have demonstrated that a number of mosquito-borne flavivirus pathogens are vertically transmitted in their insect vectors, providing a mechanism for these arboviruses to persist during adverse climatic conditions or in the absence of a susceptible vertebrate host. In this study, designed to test whether Zika virus (ZIKV) could be vertically transmitted, female Aedes aegypti and Aedes albopictus were injected with ZIKV, and their F1 adult progeny were tested for ZIKV infection. Of 69 Ae. aegypti pools, six consisted of a total of 1,738 F1 adults, yielded ZIKV upon culture, giving a minimum filial infection rate of 1:290. In contrast, none of 803 F1 Ae. albopictus adults (32 pools) yielded ZIKV. The MFIR for Ae. aegypti was comparable to MFIRs reported for other flaviviruses in mosquitoes, including dengue, Japanese encephalitis, yellow fever, West Nile, and St. Louis encephalitis viruses. The results suggest that vertical transmission may provide a potential mechanism for the virus to survive during adverse conditions.

Concepts: Mosquito, Yellow fever, Aedes aegypti, Aedes, Dengue fever, Encephalitis, Flaviviridae, Flaviviruses

252

Zika virus, a mosquito-borne flavivirus, spread to the Region of the Americas (Americas) in mid-2015, and appears to be related to congenital microcephaly and Guillain-Barré syndrome (1,2). On February 1, 2016, the World Health Organization (WHO) declared the occurrence of microcephaly cases in association with Zika virus infection to be a Public Health Emergency of International Concern.* On December 31, 2015, Puerto Rico Department of Health (PRDH) reported the first locally acquired (index) case of Zika virus disease in a jurisdiction of the United States in a patient from southeastern Puerto Rico. During November 23, 2015-January 28, 2016, passive and enhanced surveillance for Zika virus disease identified 30 laboratory-confirmed cases. Most (93%) patients resided in eastern Puerto Rico or the San Juan metropolitan area. The most frequently reported signs and symptoms were rash (77%), myalgia (77%), arthralgia (73%), and fever (73%). Three (10%) patients were hospitalized. One case occurred in a patient hospitalized for Guillain-Barré syndrome, and one occurred in a pregnant woman. Because the most common mosquito vector of Zika virus, Aedes aegypti, is present throughout Puerto Rico, Zika virus is expected to continue to spread across the island. The public health response in Puerto Rico is being coordinated by PRDH with assistance from CDC. Clinicians in Puerto Rico should report all cases of microcephaly, Guillain-Barré syndrome, and suspected Zika virus disease to PRDH. Other adverse reproductive outcomes, including fetal demise associated with Zika virus infection, should be reported to PRDH. To avoid infection with Zika virus, residents of and visitors to Puerto Rico, particularly pregnant women, should strictly follow steps to avoid mosquito bites, including wearing pants and long-sleeved shirts, using permethrin-treated clothing and gear, using an Environmental Protection Agency (EPA)-registered insect repellent, and ensuring that windows and doors have intact screens.

Concepts: Pregnancy, United States, Mosquito, Yellow fever, Aedes aegypti, Aedes, Dengue fever, World Health Organization

249

Reducing the number of host-vector interactions is an effective way to reduce the spread of vector-borne diseases. Repellents are widely used to protect humans from a variety of protozoans, viruses, and nematodes. DEET (N,N-Diethyl-meta-toluamide), a safe and effective repellent, was developed during World War II. Fear of possible side effects of DEET has created a large market for “natural” DEET-free repellents with a variety of active ingredients. We present a comparative study on the efficacy of eight commercially available products, two fragrances, and a vitamin B patch. The products were tested using a human hand as attractant in a Y-tube olfactometer setup with Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), both major human disease vectors. We found that Ae. albopictus were generally less attracted to the test subject’s hand compared with Ae, aegypti. Repellents with DEET as active ingredient had a prominent repellency effect over longer times and on both species. Repellents containing p-menthane-3,8-diol produced comparable results but for shorter time periods. Some of the DEET-free products containing citronella or geraniol did not have any significant repellency effect. Interestingly, the perfume we tested had a modest repellency effect early after application, and the vitamin B patch had no effect on either species. This study shows that the different active ingredients in commercially available mosquito repellent products are not equivalent in terms of duration and strength of repellency. Our results suggest that products containing DEET or p-menthane-3,8-diol have long-lasting repellent effects and therefore provide good protection from mosquito-borne diseases.

Concepts: Effectiveness, Mosquito, Aedes aegypti, Aedes, Dengue fever, Insect repellent, Asian tiger mosquito, DEET

239

Zika virus is a mosquito-borne flavivirus that is related to dengue virus and transmitted primarily by Aedes aegypti mosquitoes, with humans acting as the principal amplifying host during outbreaks. Zika virus was first reported in Brazil in May 2015 (1). By February 9, 2016, local transmission of infection had been reported in 26 countries or territories in the Americas.* Infection is usually asymptomatic, and, when symptoms are present, typically results in mild and self-limited illness with symptoms including fever, rash, arthralgia, and conjunctivitis. However, a surge in the number of children born with microcephaly was noted in regions of Brazil with a high prevalence of suspected Zika virus disease cases. More than 4,700 suspected cases of microcephaly were reported from mid-2015 through January 2016, although additional investigations might eventually result in a revised lower number (2). In response, the Brazil Ministry of Health established a task force to further investigate possible connections between the virus and brain anomalies in infants (3).

Concepts: Disease, Infection, Mosquito, Yellow fever, Fever, Aedes aegypti, Aedes, Dengue fever

192

Mosquito-borne disease is an annual problem in Australia, with endemic pathogens such as Ross River virus infecting thousands of people each year. The recent emergence of Zika virus in South America and the Pacific, together with ongoing outbreaks of dengue viruses in Southeast Asia, generated great community interest in the most effective strategies to avoid mosquito bites. Large-scale mosquito control programs are not common in Australia and are limited in New South Wales (NSW). The use of topical insect repellents is a key recommendation by health authorities to prevent mosquito-borne disease. All products sold in Australia purporting to repel mosquitoes must be registered with the Australian Pesticides and Veterinary Medicines Authority. Despite around 100 commercial products registered as repelling mosquitoes, there are relatively few active ingredients used across these formulations. The most common are diethyltoluamide (DEET), picaridin, p-menthane-3,8-diol (PMD) and a range of plant-derived products (e.g. melaleuca, eucalyptus, citronella oils). Research has shown that each of these active ingredients varies in the duration of protection provided against biting mosquitoes. Recommendations by health authorities are informed by this research, but inconsistencies between recommendations and available repellent formulations and their concentration of active ingredients can cause confusion in the community. There are conflicts between the data resulting from scholarly research, marketing promotion by manufacturers and recommendations provided by overseas health authorities. A review was undertaken of NSW Health’s current recommendations on choosing and using insect repellents, taking into consideration recent research and currently registered topical repellents.

Concepts: Malaria, Mosquito, Australia, Dengue fever, West Nile virus, Insect repellent, DEET, New South Wales

187

Dengue is a mosquito-borne disease of growing global health importance. Prevention efforts focus on mosquito control, with limited success. New insights into the spatiotemporal drivers of dengue dynamics are needed to design improved disease-prevention strategies. Given the restricted range of movement of the primary mosquito vector, Aedes aegypti, local human movements may be an important driver of dengue virus (DENV) amplification and spread. Using contact-site cluster investigations in a case-control design, we demonstrate that, at an individual level, risk for human infection is defined by visits to places where contact with infected mosquitoes is likely, independent of distance from the home. Our data indicate that house-to-house human movements underlie spatial patterns of DENV incidence, causing marked heterogeneity in transmission rates. At a collective level, transmission appears to be shaped by social connections because routine movements among the same places, such as the homes of family and friends, are often similar for the infected individual and their contacts. Thus, routine, house-to-house human movements do play a key role in spread of this vector-borne pathogen at fine spatial scales. This finding has important implications for dengue prevention, challenging the appropriateness of current approaches to vector control. We argue that reexamination of existing paradigms regarding the spatiotemporal dynamics of DENV and other vector-borne pathogens, especially the importance of human movement, will lead to improvements in disease prevention.

Concepts: Epidemiology, Malaria, Mosquito, Yellow fever, Aedes aegypti, Aedes, Dengue fever, Mosquito control

178

Dengue fever affects over a 100 million people annually hence is one of the world’s most important vector-borne diseases. The transmission area of this disease continues to expand due to many direct and indirect factors linked to urban sprawl, increased travel and global warming. Current preventative measures include mosquito control programs, yet due to the complex nature of the disease and the increased importation risk along with the lack of efficient prophylactic measures, successful disease control and elimination is not realistic in the foreseeable future. Epidemiological models attempt to predict future outbreaks using information on the risk factors of the disease. Through a systematic literature review, this paper aims at analyzing the different modeling methods and their outputs in terms of acting as an early warning system. We found that many previous studies have not sufficiently accounted for the spatio-temporal features of the disease in the modeling process. Yet with advances in technology, the ability to incorporate such information as well as the socio-environmental aspect allowed for its use as an early warning system, albeit limited geographically to a local scale.

Concepts: Epidemiology, Dengue fever, Warning system, Warning systems