SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Demographic economics

176

Seabird population changes are good indicators of long-term and large-scale change in marine ecosystems, and important because of their many impacts on marine ecosystems. We assessed the population trend of the world’s monitored seabirds (1950-2010) by compiling a global database of seabird population size records and applying multivariate autoregressive state-space (MARSS) modeling to estimate the overall population trend of the portion of the population with sufficient data (i.e., at least five records). This monitored population represented approximately 19% of the global seabird population. We found the monitored portion of the global seabird population to have declined overall by 69.7% between 1950 and 2010. This declining trend may reflect the global seabird population trend, given the large and apparently representative sample. Furthermore, the largest declines were observed in families containing wide-ranging pelagic species, suggesting that pan-global populations may be more at risk than shorter-ranging coastal populations.

Concepts: Sample, Demography, Population, Population ecology, Demographic economics, World population, Carrying capacity, Population growth

170

An increasing number of patients from diverse demographic groups share and search for health-related information on Web-based social media. However, little is known about the content of the posted information with respect to the users' demographics.

Concepts: Demography, Sociology, Demographics, Communication, Demographic profile, Demographic economics

166

Anthropogenic changes in land use and the extirpation of apex predators have facilitated explosive growth of mesopredator populations. Consequently, many species have been subjected to extensive control throughout portions of their range due to their integral role as generalist predators and reservoirs of zoonotic disease. Yet, few studies have monitored the effects of landscape composition or configuration on the demographic or behavioral response of mesopredators to population manipulation. During 2007 we removed 382 raccoons (Procyon lotor) from 30 forest patches throughout a fragmented agricultural ecosystem to test hypotheses regarding the effects of habitat isolation on population recovery and role of range expansion and dispersal in patch colonization of mesopredators in heterogeneous landscapes. Patches were allowed to recolonize naturally and demographic restructuring of patches was monitored from 2008-2010 using mark-recapture. An additional 25 control patches were monitored as a baseline measure of demography. After 3 years only 40% of experimental patches had returned to pre-removal densities. This stagnant recovery was driven by low colonization rates of females, resulting in little to no within-patch recruitment. Colonizing raccoons were predominantly young males, suggesting that dispersal, rather than range expansion, was the primary mechanism driving population recovery. Contrary to our prediction, neither landscape connectivity nor measured local habitat attributes influenced colonization rates, likely due to the high dispersal capability of raccoons and limited role of range expansion in patch colonization. Although culling is commonly used to control local populations of many mesopredators, we demonstrate that such practices create severe disruptions in population demography that may be counterproductive to disease management in fragmented landscapes due to an influx of dispersing males into depopulated areas. However, given the slow repopulation rates observed in our study, localized depopulation may be effective at reducing negative ecological impacts of mesopredators in fragmented landscapes at limited spatial and temporal scales.

Concepts: Demography, Population, Population ecology, Demographics, Demographic economics, Apex predator, Raccoon, Nurgaliev's law

165

Determining which demographic and ecological parameters contribute to variation in population growth rate is crucial to understanding the dynamics of declining populations. This study aimed to evaluate the magnitude and mechanisms of an apparent major decline in an Atlantic Puffin Fratercula arctica population. This was achieved using a 27-year dataset to estimate changes in population size and in two key demographic rates: adult survival and breeding success. Estimated demographic variation was then related to two ecological factors hypothesised to be key drivers of demographic change, namely the abundance of the main predator at the study site, the Great Skua Stercorarius skua, and Atlantic Puffin chick food supply, over the same 27-year period. Using a population model, we assessed whether estimated variation in adult survival and reproductive success was sufficient to explain the population change observed. Estimates of Atlantic Puffin population size decreased considerably during the study period, approximately halving, whereas Great Skua population estimates increased, approximately trebling. Estimated adult Atlantic Puffin survival remained high across all years and did not vary with Great Skua abundance; however, Atlantic Puffin breeding success and quantities of fish prey brought ashore by adults both decreased substantially through the period. A population model combining best possible demographic parameter estimates predicted rapid population growth, at odds with the long-term decrease observed. To simulate the observed decrease, population models had to incorporate low immature survival, high immature emigration, or increasingly high adult non-breeding rates. We concluded that reduced recruitment of immatures into the breeding population was the most likely cause of population decrease. This study showed that increase in the size of a predator population does not always impact on the survival of adult prey and that reduced recruitment can be a crucial determinant of seabird population size but can easily go undetected.

Concepts: Demography, Population, Population ecology, Demographic economics, World population, Carrying capacity, Population growth, Puffin

140

Averaged demographic data from previously unfished populations of Nautilus and Allonautilus (Cephalopoda) provide a baseline to determine if a population is undisturbed and in “equilibrium” or is in “disequilibrium” as a result of fishery pressure. Data are available for previously undisturbed local nautiloid populations in Papua New Guinea, Australia, Indonesia, Fiji, Palau, American Samoa, New Caledonia and Vanuatu (total n = 2,669 live-caught, tagged and released animals). The data show that unfished populations average ~75% males and ~74% mature animals. By contrast, unpublished, anecdotal and historical records since 1900 from the heavily fished central Philippines have shown a persistent decline in trap yields and a change in demographics of N. pompilius. By 1979, a sample of fished live-caught animals (n = 353) comprised only ~28% males and ~27% mature animals. Continued uncontrolled trapping caused collapse of the fishery and the shell industry has moved elsewhere, including Indonesia. In addition, we show that estimated rates of population decline are offered by unpublished tag-release records in unfished Palau. These data show that patterns of trap yields and demographic differences between fished and unfished populations in relative age class and sex ratios can indicate disequilibria wrought by fisheries pressure that can render local populations inviable. Given adequate samples (n ≥100 live-caught animals), a threshold of <50% males and mature animals in fished populations should signal the need to initiate curative conservation initiatives. The current trajectory of uncontrolled nautiloid fisheries can only mean trouble and possibly extinction of local populations of this ancient, iconic molluscan lineage.

Concepts: Demography, Demographics, Papua New Guinea, Oceania, Demographic economics, Mollusca, New Guinea, Nautilus

125

Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential. Furthermore, we identify needs for further research and scope for improvement in this kind of scenario-based exposure analysis.

Concepts: Demography, Population, Population ecology, Population density, Demographic economics, World population, Flood, Carrying capacity

64

We merge two methodologies, prospective measures of population aging and probabilistic population forecasts. We compare the speed of change and variability in forecasts of the old age dependency ratio and the prospective old age dependency ratio as well as the same comparison for the median age and the prospective median age. While conventional measures of population aging are computed on the basis of the number of years people have already lived, prospective measures are computed also taking account of the expected number of years they have left to live. Those remaining life expectancies change over time and differ from place to place. We compare the probabilistic distributions of the conventional and prospective measures using examples from China, Germany, Iran, and the United States. The changes over time and the variability of the prospective indicators are smaller than those that are observed in the conventional ones. A wide variety of new results emerge from the combination of methodologies. For example, for Germany, Iran, and the United States the likelihood that the prospective median age of the population in 2098 will be lower than it is today is close to 100 percent.

Concepts: Demography, Population, Aging, Retirement, Demographic economics, Dependency ratio, Pensions crisis, Sub-replacement fertility

48

Here we show the extent to which the expected world population growth could be lowered by successfully implementing the recently agreed-upon Sustainable Development Goals (SDGs). The SDGs include specific quantitative targets on mortality, reproductive health, and education for all girls by 2030, measures that will directly and indirectly affect future demographic trends. Based on a multidimensional model of population dynamics that stratifies national populations by age, sex, and level of education with educational fertility and mortality differentials, we translate these goals into SDG population scenarios, resulting in population sizes between 8.2 and 8.7 billion in 2100. Because these results lie outside the 95% prediction range given by the 2015 United Nations probabilistic population projections, we complement the study with sensitivity analyses of these projections that suggest that those prediction intervals are too narrow because of uncertainty in baseline data, conservative assumptions on correlations, and the possibility of new policies influencing these trends. Although the analysis presented here rests on several assumptions about the implementation of the SDGs and the persistence of educational, fertility, and mortality differentials, it quantitatively illustrates the view that demography is not destiny and that policies can make a decisive difference. In particular, advances in female education and reproductive health can contribute greatly to reducing world population growth.

Concepts: Demography, Population, Population ecology, Life expectancy, Demographic economics, United Nations, World population, Population growth

45

The number of individuals with visual impairment (VI) and blindness is increasing in the United States and around the globe as a result of shifting demographics and aging populations. Tracking the number and characteristics of individuals with VI and blindness is especially important given the negative effect of these conditions on physical and mental health.

Concepts: Demography, United States, Poverty in the United States, U.S. state, Demographic economics, Visual impairment, Photography, Massachusetts

31

Tigers (Panthera tigris), like many large carnivores, are threatened by anthropogenic impacts, primarily habitat loss and poaching. Current conservation plans for tigers focus on population expansion, with the goal of doubling census size in the next 10 years. Previous studies have shown that because the demographic decline was recent, tiger populations still retain a large amount of genetic diversity. Although maintaining this diversity is extremely important to avoid deleterious effects of inbreeding, management plans have yet to consider predictive genetic models. We used coalescent simulations based on previously sequenced mitochondrial fragments (n = 125) from 5 of 6 extant subspecies to predict the population growth needed to maintain current genetic diversity over the next 150 years. We found that the level of gene flow between populations has a large effect on the local population growth necessary to maintain genetic diversity, without which tigers may face decreases in fitness. In the absence of gene flow, we demonstrate that maintaining genetic diversity is impossible based on known demographic parameters for the species. Thus, managing for the genetic diversity of the species should be prioritized over the riskier preservation of distinct subspecies. These predictive simulations provide unique management insights, hitherto not possible using existing analytical methods.

Concepts: Conservation biology, Demography, Lion, Felidae, Demographic economics, Leopard, Tiger, Panthera