Discover the most talked about and latest scientific content & concepts.

Concept: Datura


Datura stramonium is an herbaceous annual plant. All parts of the plant contain tropane alkaloids such as atropine and scopolamine. We report the case of a 22-year-old man admitted to a general hospital for visual and aural hallucinations. One week after his admission, as the hallucinations remained, the patient was transferred to a psychiatric hospital. Neither blood nor urine was conserved during his hospitalization, so a hair analysis was requested in order to identify a possible consumption of a Datura seed infusion.

Concepts: Hospital, Atropine, Psychiatric hospital, Perennial plant, Psychedelics, dissociatives and deliriants, Hyoscyamine, Datura, Datura stramonium


Tropane alkaloids are a wide group of substances that comprises more than 200 compounds occurring especially in the Solanaceae family. The main aim of this study is the development of a method for the analysis of the principal tropane alkaloids as atropine, scopolamine, anisodamine, tropane, tropine, littorine, homatropine, apoatropine, aposcopolamine, scopoline, tropinone, physoperuvine, pseudotropine and cuscohygrine in cereals and related matrices. For that, a simple solid-liquid extraction was optimized and a liquid chromatographic method coupled to a single stage Exactive-Orbitrap was developed. The method was validated obtaining recoveries in the range of 60-109% (except for some compounds in soy), precision values (expressed as relative standard deviation) lower than 20% and detection and quantification limits equal to or lower than 2 and 3μg/kg respectively. Finally, the method was applied to the analysis of different types of samples as buckwheat, linseed, soy and millet, obtaining positives for anisodamine, scopolamine, atropine, littorine and tropinone in a millet flour sample above the quantification limits, whereas atropine and scopolamine were detected in a buckwheat sample, below the quantification limit. Contaminated samples with Solanaceaes seeds (Datura Stramonium and Brugmansia Arborea) were also analysed, detecting concentrations up to 693μg/kg (scopolamine) for contaminated samples with Brugmansia seeds and 1847μg/kg (atropine) when samples were contaminated with Stramonium seeds.

Concepts: Chromatography, Solanaceae, Atropine, Cocaine, Hyoscyamine, Datura, Tropane, Brugmansia


Chitosan oligosaccharides (COS) have been shown to regulate various cellular and biological functions. The aim of this study was to investigate the antimetastatic potency of COS and the underlying mechanism. Here, we established a stably N-acetylglucosaminyltransferase V (GnT-V)-overexpressed MCF10A cell line. As expected, GnT-V overexpression greatly promoted cell migration in the transfectants by using wound healing assay. However, the induction in the cell migration was significantly suppressed by an addition of COS. Curiously, COS inhibited the protein expression of GnT-V in a dose dependent manner. Consistent with that, the reactivities with datura stramonium (DSA) and leuko-agglutinating phytohemagglutinin (L4-PHA) lectins, which specifically recognize branched N-acetylglucosamine (GlcNAc) structure, were also suppressed by COS. Taken together, these results demonstrated COS inhibited breast epithelial cell migration through down-regulation of GnT-V and its products, branched N-glycans, indicating that COS may serve as a potential novel therapeutic candidate for the treatment of metastatic breast cancer.

Concepts: Gene expression, Cancer, Breast cancer, Metastasis, Wound healing, Metastatic breast cancer, Datura, Datura stramonium


Datura metel L. (Solanaceae) is an annual herb that has been widely used in the traditional medicine for the treatment of coughs, bronchial asthma, and rheumatism. Chemical investigation of an acidic methanol extract of the whole plants of D. metel resulted in the isolation of five new steroidal saponins (1-3, 5, and 6), named metelosides A-E, and four known compounds (4, 7-9). Their structures were elucidated by extensive spectroscopic methods, including 1D and 2D NMR and MS spectra. The structures of metelosides A and B were found to be unusual among the reported spirostane-type steroidal saponins due to the presence of the acetamide groups in the molecules. Compounds 2, 4, 5, and 6 were shown to be cytotoxic against three cancer cell lines, including HepG2, MCF-7, and SK-Mel-2 cells. Furthermore, compounds 3, 4, and 7 exhibited modest anti-inflammatory effects through inhibition of NO production in LPS-stimulated BV cells.

Concepts: Immune system, Cell, Asthma, Cell culture, Glucocorticoid, Chemical compound, Perennial plant, Datura


Methods for the accomplishment of small-molecule imaging by mass spectrometry are challenged by the need for sample pre-treatment steps such as cryo-sectioning, dehydration, chemical fixation, or application of a matrix or solvent, that must be performed to obtain interpretable spatial distribution data. Furthermore, these steps along with requirements of the mass spectrometer such as high vacuum, can severely limit the range of sample types that can be analyzed by this powerful method. Here, we report the development of a laser ablation-direct analysis in real time imaging mass spectrometry approach which couples a 213 nm Nd:YAG solid state UV laser to a direct analysis in real time ion source and high resolution time-of-flight mass spectrometer. This platform enables facile determination of the spatial distribution of small-molecules spanning a range of polarities in a diversity of sample types, and requires no matrix, vacuum, solvent, or complicated sample pre-treatment steps. It furnishes high resolution data, can be performed under ambient conditions on samples in their native form, and results in little to no fragmentation of analytes. We demonstrate its application through determination of the spatial distribution of molecules involved in the biosynthetic cascade leading to formation of the clinically relevant alkaloids atropine and scopolamine in Datura leichhardtii seed tissue.

Concepts: Spectroscopy, Mass spectrometry, Ion source, Resolution, Measuring instruments, Time-of-flight, Chemical ionization, Datura


Tropane alkaloids are toxic secondary metabolites produced by Solanaceae plants. Among them, plants from Datura genus produce significant amounts of scopolamine and hyoscyamine; the latter undergoes racemization to atropine during isolation. Because of their biological importance, toxic properties and commonly reported food and animal feed contamination by different Datura sp. organs, there is a constant need for reliable methods for the analysis of tropane alkaloids in many matrices. In the current study, three extraction and sample-clean up procedures for the determination of scopolamine and atropine in plant material were compared in terms of their effectiveness and repeatability. Standard liquid-liquid extraction (LLE) and EXtrelut(®) NT 3 columns were used for the sample clean-up. Combined ultrasound-assisted extraction and 24h static extraction using ethyl acetate, followed by multiple LLE steps was found the most effective separation method among tested. However, absolute extraction recovery was relatively low and reached 45-67% for atropine and 52-73% for scopolamine, depending on the compound concentration. The same method was also the most effective one for the isolation of target compounds from Datura stramonium leaves. EXtrelut(®) columns, on the other hand, displayed relatively low effectiveness in isolating atropine and scopolamine from such a complex matrix and hence could not be recommended. The most effective method was also applied to the extraction of alkaloids from roots and stems of D. stramonium. Quantitative analyses were performed using validated method based on gas chromatography with flame ionization detector (GC-FID). Based on the results, the importance of the proper selection of internal standards in the analysis of tropane alkaloids was stressed out.

Concepts: Solanaceae, Atropine, Hyoscyamine, Datura, Datura stramonium, Tropane, Scopolamine, Brugmansia


Hypercontractile esophagus (nicknamed jackhammer esophagus) is a recently defined disease within the esophageal motility disorders classification. Responses to treatments for jackhammer esophagus have been inconsistent in previous trials, possibly due to its heterogeneous manifestation. Thus, we reviewed 10 patients diagnosed with jackhammer esophagus and compared their clinical and manometric features at baseline. Additionally, manometric and symptomatic responses after treatment with known smooth muscle relaxants, including anticholinergic drugs (cimetropium bromide and scopolamine butylbromide) and a phosphodiesterase-5 inhibitor (sildenafil) were compared. We observed two distinct subgroups in the findings: one with hypercontractility and normal distal latencies (“classic jackhammer esophagus,” n=7) and the other with hypercontractility and short distal latencies (“spastic jackhammer esophagus,” n=3). The two types also differed in their responses to medications in that symptoms improved upon treatment with an anticholinergic agent in classic jackhammer esophagus patients, while spastic jackhammer esophagus was unresponsive to both the anticholinergic drugs and the phosphodiesterase-5 inhibitor. In conclusion, hypercontractile esophagus may be a heterogeneous disease with different underlying pathophysiologies. We introduced two novel terms, “classic jackhammer esophagus” and “spastic jackhammer esophagus,” to distinguish the two types.

Concepts: Asthma, Acetylcholine, Anticholinergic, Esophagus, Muscle relaxant, Datura, Mydriasis, Scopolamine


Although some findings have reported the medicinal properties of Jimson weed (Datura stramonium L.), there exist some serious neurological effects such as hallucination, loss of memory and anxiety, which has been reported in folklore. Consequently, the modulatory effect of alkaloid extracts from leaf and fruit of Jimson weed on critical enzymes of the purinergic [ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5'-nucleotidase (E-NTDase), alkaline phosphatase (ALP) and Na(+)/K(+) ATPase] system of neurotransmission (in vitro and in vivo) was the focus of this study. Alkaloid extracts were prepared by solvent extraction method and their interaction with the activities of these enzymes were assessed (in vitro) in rat brain tissue homogenate and in vivo in rats administered 100 and 200mg/kg body weight (p.o) of the extracts for thirty days, while administration of single dose (1mg/kg body weight; i.p.) of scopolamine served as the positive control. The extracts were also investigated for their Fe(2+) and Cu(2+) chelating abilities and GC-MS characterization of the extracts was also carried out. The results revealed that the extracts inhibited activates of E-NTPDase, E-NTDase and ALP in a concentration dependent manner, while stimulating the activity of Na(+)/K(+) ATPase (in vitro). Both extracts also exhibited Fe(2+) and Cu(2+) chelating abilities. Considering the EC50 values, the fruit extract had significantly higher (P<0.05) modulatory effect on the enzymes' activities as well as metal chelating abilities, compared to the leaf extract; however, there was no significant difference (P>0.05) in both extracts' inhibitory effects on E-NTDase. The in vivo study revealed reduction in the activities of ENTPDase, E-NTDase, and Na(+)/K(+) ATPase in the extract-administered rat groups compared to the control group, while an elevation in ALP activity was observed in the extract-administered rat groups compared to the control group. GC-MS characterization revealed the presence of atropine, scopolamine, amphetamine, 3-methyoxyamphetamine, 3-ethoxyamhetamine cathine, spermine, phenlyephirine and 3-piperidinemethanol, among others in the extracts. Hence, alterations of activities of critical enzymes of purinergic signaling (in vitro and in vivo) by alkaloid extracts from leaf and fruit of Jimson weed suggest one of the mechanisms behind its neurological effects as reported in folklore.

Concepts: In vivo, Atropine, Extract, Psychedelics, dissociatives and deliriants, Hyoscyamine, Datura, Datura stramonium, Deliriants


Plant resistance to herbivores involves physical and chemical plant traits that prevent or diminish damage by herbivores, and hence may promote coevolutionary arm-races between interacting species. Although Datura stramonium’s concentration of tropane alkaloids is under selection by leaf beetles, it is not known whether chemical defense reduces seed predation by the specialist weevil, Trichobaris soror, and if it is evolving by natural selection. We measured infestation by T. soror as well as the concentration of the plants' two main tropane alkaloids in 278 D. stramonium plants belonging to 31 populations in central Mexico. We assessed whether the seed predator exerted preferences on the levels of both alkaloids and whether they affect plant fitness. Results show great variation across populations in the concentration of scopolamine and atropine in both leaves and seeds of plants of D. stramonium, as well as in the intensity of infestation and the proportion of infested fruits by T. soror. The concentration of scopolamine in seeds and leaves are negatively associated across populations. We found that scopolamine concentration increases plant fitness. Our major finding was the detection of a positive relationship between the population average concentrations of scopolamine with the selection differentials of scopolamine. Such spatial variation in the direction and intensity of selection on scopolamine may represent a coevolutionary selective mosaic. Our results support the view that variation in the concentration of scopolamine among-populations of D. stramonium in central Mexico is being driven, in part, by selection exerted by T. soror, pointing an adaptive role of tropane alkaloids in this plant species.

Concepts: Natural selection, Plant, Fruit, Seed, Plant morphology, Atropine, Hyoscyamine, Datura


Datura poisonings have been previously described but remain rare in forensic practice. Here, we present a homicide case involving Datura poisoning, which occurred during a robbery. Toxicological results were obtained by second autopsy performed after one previous autopsy and full body embalmment. A 35-year-old man presented with severe stomach and digestive pain, became unconscious and ultimately died during a trip in Asia. A first autopsy conducted in Asia revealed no trauma, intoxication or pathology. The corpse was embalmed with methanol/formalin. A second autopsy was performed in France, and toxicology samples were collected. Scopolamine, atropine, and hyoscyamine were found in the vitreous humor, in addition to methanol. Police investigators questioned the local travel guide, who admitted to having added Datura to a drink to stun and rob his victim. The victim’s death was attributed to disordered heart rhythm due to severe anticholinergic syndrome following fatal Datura intoxication. This is a recent case of a rare homicide involving Datura that highlights general information on Datura and discusses forensic interpretation after a previous autopsy and body embalmment.

Concepts: Death, Poison, Anticholinergic, Autopsy, Embalming, Datura, Datura stramonium, Scopolamine