SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Data management

176

SUMMARY: InterMine is an open-source data warehouse system that facilitates the building of databases with complex data integration requirements and a need for a fast, customisable query facility. Using InterMine, large biological databases can be created from a range of heterogeneous data sources, and the extensible data model allows for easy integration of new data types. The analysis tools include a flexible query builder, genomic region search, and a library of “widgets” performing various statistical analyses. The results can be exported in many commonly used formats. InterMine is a fully extensible framework where developers can add new tools and functionality. Additionally, there is a comprehensive set of web services, for which client libraries are provided in five commonly used programming languages. AVAILABILITY: Freely available from http://www.intermine.org under the LGPL license. CONTACT: g.micklem@gen.cam.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Concepts: Bioinformatics, Statistics, Model organism, Data, Programming language, Data management, Type system, Biological data

169

Many important questions in biology are, fundamentally, comparative, and this extends to our analysis of a growing number of sequenced genomes. Existing genomic analysis tools are often organized around literal views of genomes as linear strings. Even when information is highly condensed, these views grow cumbersome as larger numbers of genomes are added. Data aggregation and summarization methods from the field of visual analytics can provide abstracted comparative views, suitable for sifting large multi-genome datasets to identify critical similarities and differences. We introduce a software system for visual analysis of comparative genomics data. The system automates the process of data integration, and provides the analysis platform to identify and explore features of interest within these large datasets. GenoSets borrows techniques from business intelligence and visual analytics to provide a rich interface of interactive visualizations supported by a multi-dimensional data warehouse. In GenoSets, visual analytic approaches are used to enable querying based on orthology, functional assignment, and taxonomic or user-defined groupings of genomes. GenoSets links this information together with coordinated, interactive visualizations for both detailed and high-level categorical analysis of summarized data. GenoSets has been designed to simplify the exploration of multiple genome datasets and to facilitate reasoning about genomic comparisons. Case examples are included showing the use of this system in the analysis of 12 Brucella genomes. GenoSets software and the case study dataset are freely available at http://genosets.uncc.edu. We demonstrate that the integration of genomic data using a coordinated multiple view approach can simplify the exploration of large comparative genomic data sets, and facilitate reasoning about comparisons and features of interest.

Concepts: Gene, Genetics, Genome, Genomics, Data set, Logic, Data management, Business intelligence

158

PubChem is an open repository for chemical structures, biological activities and biomedical annotations. Semantic Web technologies are emerging as an increasingly important approach to distribute and integrate scientific data. Exposing PubChem data to Semantic Web services may help enable automated data integration and management, as well as facilitate interoperable web applications.

Concepts: Mathematics, Chemical substance, Semantic Web, Web 2.0, Internet, Reference, Data management, Web services

96

Blockchain is a decentralized transaction and data management technology developed first for Bitcoin cryptocurrency. The interest in Blockchain technology has been increasing since the idea was coined in 2008. The reason for the interest in Blockchain is its central attributes that provide security, anonymity and data integrity without any third party organization in control of the transactions, and therefore it creates interesting research areas, especially from the perspective of technical challenges and limitations. In this research, we have conducted a systematic mapping study with the goal of collecting all relevant research on Blockchain technology. Our objective is to understand the current research topics, challenges and future directions regarding Blockchain technology from the technical perspective. We have extracted 41 primary papers from scientific databases. The results show that focus in over 80% of the papers is on Bitcoin system and less than 20% deals with other Blockchain applications including e.g. smart contracts and licensing. The majority of research is focusing on revealing and improving limitations of Blockchain from privacy and security perspectives, but many of the proposed solutions lack concrete evaluation on their effectiveness. Many other Blockchain scalability related challenges including throughput and latency have been left unstudied. On the basis of this study, recommendations on future research directions are provided for researchers.

Concepts: Scientific method, Science, Research, The Current, Perspective, Data management, Database transaction, Transaction processing

68

There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders-representing academia, industry, funding agencies, and scholarly publishers-have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community.

Concepts: Data, Academia, ACT, Data management, Data maintenance, ONE Campaign

24

The purpose of this document is to describe behaviors, including the elements and controls, to ensure the integrity of GxP data in pharmaceutical manufacturing operations. Fundamental concepts such as ALCOA (attributable, legible, contemporaneous, original, and accurate) and the prevent/detect/respond approach to a data integrity program are defined and discussed. This paper was developed through the PDA Data Integrity Task Force and reviewed and approved by the PDA Regulatory and Quality Advisory Board as well as the PDA Board of Directors. Data integrity is a significant component of a company’s Quality System, providing foundational assurance of the data a company uses to operate in compliance with regulatory requirements and to demonstrate its products are safe and effective for their intended use. Through data integrity the company recognizes its responsibility to prove the origin, transmission, and content of the company’s data and that data is what it is purported to be. To holistically address Data Integrity, the Parenteral Drug Association (PDA) is developing a set of tools in the form of PDA Technical Reports, PDA Training, Data Integrity Workshops, and Points to Consider documents that can be used by industry to address this serious issue. This document serves as an introduction to that suite of tools to follow.

Concepts: Pharmacology, Quality, Data, Board of directors, Data management, Document, Documents

19

Sharing of research data has begun to gain traction in many areas of the sciences in the past few years because of changing expectations from the scientific community, funding agencies, and academic journals. National Science Foundation (NSF) requirements for a data management plan (DMP) went into effect in 2011, with the intent of facilitating the dissemination and sharing of research results. Many projects that were funded during 2011 and 2012 should now have implemented the elements of the data management plans required for their grant proposals. In this paper we define ‘data sharing’ and present a protocol for assessing whether data have been shared and how effective the sharing was. We then evaluate the data sharing practices of researchers funded by the NSF at Oregon State University in two ways: by attempting to discover project-level research data using the associated DMP as a starting point, and by examining data sharing associated with journal articles that acknowledge NSF support. Sharing at both the project level and the journal article level was not carried out in the majority of cases, and when sharing was accomplished, the shared data were often of questionable usability due to access, documentation, and formatting issues. We close the article by offering recommendations for how data producers, journal publishers, data repositories, and funding agencies can facilitate the process of sharing data in a meaningful way.

Concepts: Scientific method, Academic publishing, Science, Research, Peer review, Data management, National Science Foundation, Oregon State University

19

In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms.

Concepts: Scientific method, Cancer, Breast cancer, Cancer staging, Data, Knowledge, Data management, Data maintenance

18

Reactome is a free, open-source, open-data, curated and peer-reviewed knowledgebase of biomolecular pathways. One of its main priorities is to provide easy and efficient access to its high quality curated data. At present, biological pathway databases typically store their contents in relational databases. This limits access efficiency because there are performance issues associated with queries traversing highly interconnected data. The same data in a graph database can be queried more efficiently. Here we present the rationale behind the adoption of a graph database (Neo4j) as well as the new ContentService (REST API) that provides access to these data. The Neo4j graph database and its query language, Cypher, provide efficient access to the complex Reactome data model, facilitating easy traversal and knowledge discovery. The adoption of this technology greatly improved query efficiency, reducing the average query time by 93%. The web service built on top of the graph database provides programmatic access to Reactome data by object oriented queries, but also supports more complex queries that take advantage of the new underlying graph-based data storage. By adopting graph database technology we are providing a high performance pathway data resource to the community. The Reactome graph database use case shows the power of NoSQL database engines for complex biological data types.

Concepts: Database, Relational database, Data management, Relational algebra, Databases, SQL, Relational model, Relation

15

Despite the clear demand for open data sharing, its implementation within plant science is still limited. This is, at least in part, because open data-sharing raises several unanswered questions and challenges to current research practices. In this commentary, some of the challenges encountered by plant researchers at the bench when generating, interpreting, and attempting to disseminate their data have been highlighted. The difficulties involved in sharing sequencing, transcriptomics, proteomics, and metabolomics data are reviewed. The benefits and drawbacks of three data-sharing venues currently available to plant scientists are identified and assessed: (i) journal publication; (ii) university repositories; and (iii) community and project-specific databases. It is concluded that community and project-specific databases are the most useful to researchers interested in effective data sharing, since these databases are explicitly created to meet the researchers' needs, support extensive curation, and embody a heightened awareness of what it takes to make data reuseable by others. Such bottom-up and community-driven approaches need to be valued by the research community, supported by publishers, and provided with long-term sustainable support by funding bodies and government. At the same time, these databases need to be linked to generic databases where possible, in order to be discoverable to the majority of researchers and thus promote effective and efficient data sharing. As we look forward to a future that embraces open access to data and publications, it is essential that data policies, data curation, data integration, data infrastructure, and data funding are linked together so as to foster data access and research productivity.

Concepts: Scientific method, Academic publishing, Research, Botany, Bench, Open content, Data management, Open research