SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Danube Delta

28

SUMMARY Species introduced into new areas often show a reduction in parasite and genetic diversity associated to the limited number of founding individuals. In this study, we compared microsatellite and parasite diversity in both native (lower Danube) and introduced populations of 4 Ponto-Caspian gobies, including those (1) introduced from within the same river system (middle Danube; Neogobius kessleri and N. melanostomus), and (2) introduced from a different river system (River Vistula; N. fluviatilis and N. gymnotrachelus). Microsatellite data confirmed the lower Danube as a source population for gobies introduced into the middle Danube. Both native and introduced (same river system) populations of N. kessleri and N. melanostomus had comparable parasite species richness and microsatellite diversity, possibly due to multiple and/or continual migration/introduction of new individuals and the acquisition of local parasites. Reduced parasite species richness and microsatellite diversity were observed in introduced (different river system) populations in the Vistula. A low number of colonists found for N. fluviatilis and N. gymnotrachelus in the Vistula potentially resulted in reduced introduction of parasite species. Insufficient adaptation of the introduced host to local parasite fauna, together with introduction into an historically different drainage system, may also have contributed to the reduced parasite fauna.

Concepts: Biodiversity, Symbiosis, River, Rhine, Romania, Danube, Danube Delta

15

Few studies have systematically investigated differences in performance, morphology and parasitic load of invaders at different stages of an invasion. This study analyzed phenotype-environment correlations in a fish invasion from initial absence until establishment in the headwater reach of the second largest European river, the Danube. Here, the round goby (Neogobius melanostomus) formed 73% of the fish abundance and 58% of the fish biomass in rip-rap bank habitats after establishment. The time from invasion until establishment was only about two years, indicating rapid expansion. Founder populations from the invasion front were different from longer established round goby populations in demography, morphology, feeding behaviour, sex ratio and parasitic load, indicating that plasticity in these traits determines invasion success. Competitive ability was mostly dependent on growth/size-related traits rather than on fecundity. As revealed by stable isotope analyses, specimens at the invasion front had a higher trophic position in the food web and seem to benefit from lower food competition. Somatic performance seems to be more important than investment in reproduction during the early stages of the invasion process and upstream-directed range expansion is not caused by out-migrating weak or juvenile individuals that were forced to leave high density areas due to high competition. This mechanism might be true for downstream introductions via drift. Greater abundance and densities of acanthocephalan endoparasites were observed at the invasion front, which contradicts the expectation that invasion success is determined by lower parasitic pressure in newly invaded areas. Overall, the pronounced changes in fish and invertebrate communities with a dominance of alien species suggest invasional meltdown and a shift of the upper Danube River towards a novel ecosystem with species that have greater resistance to goby predation. This seems to contribute to overcoming biological resistance and improve rapidity of dispersal.

Concepts: Population, Ecology, Symbiosis, River, Romania, Danube, Danube Delta, Round goby

1

Mosquitoes are arthropods of major importance to animal and human health because they are able to transmit pathogenic agents such as filarioids (Spirurida), vector-borne nematodes, which reside in the tissues of vertebrates. In Europe, recent research has mostly focused on mosquito-borne zoonotic species, while others remain neglected. Mosquitoes are also vectors of avian malaria, which has an almost worldwide distribution, and is caused by several Plasmodium species and lineages, the most common being P. relictum. The Danube Delta region of Romania is one of the most important stopover sites for migratory birds. The local mosquito fauna is diverse and well represented, while filarial infections are known to be endemic in domestic dogs in this area. The aim of the present study was thus to assess the potential vector capacity for various filarial helminths and avian malaria of mosquitoes trapped in the Danube Delta.

Concepts: Malaria, Anopheles, Bird, Vector, Ukraine, Romania, Danube, Danube Delta

0

A “dynamic” passive sampling (DPS) device, consisting of an electrically driven large volume water pumping device coupled to a passive sampler exposure cell, was designed to enhance the sampling rate of trace organic compounds. The purpose of enhancing the sampling rate was to achieve sufficient method sensitivity, when the period available for sampling is limited to a few days. Because the uptake principle in the DPS remains the same as for conventionally-deployed passive samplers, free dissolved concentrations can be derived from the compound uptake using available passive sampler calibration parameters. This was confirmed by good agreement between aqueous concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) derived from DPS and conventional caged passive sampler. The DPS device enhanced sampling rates of compounds that are accumulated in samplers under water boundary layer control (WBL) more than five times compared with the conventionally deployed samplers. The DPS device was deployed from a ship cruising downstream the Danube River to provide temporally and spatially integrated concentrations. A DPS-deployed sampler with surface area of 400cm2can reach sampling rates up to 83Ld-1. The comparison of three passive samplers made of different sorbents and co-deployed in the DPS device, namely silicone rubber (SR), low density polyethylene (LDPE) and SDB-RPS Empore™ disks showed a good correlation of surface specific uptake for compounds that were sampled integratively during the entire exposure period. This provided a good basis for a cross-calibration between the samplers. The good correlation of free dissolved PAHs, PCBs and HCB concentration estimates obtained using SR and LDPE confirmed that both samplers are suitable for the identification of concentration gradients and trends in the water column. We showed that the differences in calculated aqueous concentrations between sampler types are mainly associated with different applied uptake models.

Concepts: Concentration, Polycyclic aromatic hydrocarbon, Organic chemistry, Aromaticity, Polychlorinated biphenyl, Biphenyl, Danube, Danube Delta

0

Many aquatic pollutants can be present at low concentrations, but their mixtures can still affect health or behavior of exposed organisms. In this study, toxicological and chemical analyses were combined for spatial contamination profiling using an innovative passive sampling approach. A novel Dynamic Passive Sampler (DPS) was employed as a mobile sampler from a ship cruising along 2130km of the Danube river during the Joint Danube Survey 3 (JDS3). The sampling was performed in eight subsequent river stretches with two types of complementary passive samplers: silicone rubber sheets (SR) used for non-polar chemicals and SDB-RPS Empore™ disks (ED) for more hydrophilic compounds. Besides extensive chemical analyses, the bioactivity of samples was characterized by a battery of reporter gene bioassays. Cross-calibration of the employed passive samplers enabled robust estimation of water concentrations applicable for compounds with a wide range of physicochemical properties. DPS was suitable for sampling of water contaminants even at pgL-1levels, with 209 of 267 analyzed compounds detected in the samples. Biological effects were detected in both ED and SR extracts across all river stretches by bioassays focused on xenobiotic metabolism mediated by the aryl hydrocarbon and pregnane X receptors, endocrine disruptive potential mediated by estrogen and androgen receptors and the oxidative stress response. The bioassay responses expressed as bioanalytical equivalent concentrations (BEQbio) were comparable with data obtained from large volume active sampling. The extracts of the ED samplers were more biologically active than extracts of SR samplers. Except of estrogenicity, where the analyzed chemicals explained on average 62% of the effects in ED samples, the detected chemicals explained <8% of BEQbiovalues. The study shows the utility of the combination of the innovative passive sampling approach with effect-based tools for efficient and fast monitoring even in water bodies with relatively low levels of contamination.

Concepts: Metabolism, Oxidative stress, Water pollution, Androgen, River, Chemical compound, Danube, Danube Delta

0

Acinetobacter spp. occur naturally in many different habitats, including food, soil, and surface waters. In clinical settings, Acinetobacter poses an increasing health problem, causing infections with limited to no antibiotic therapeutic options left. The presence of human generated multidrug resistant strains is well documented but the extent to how widely they are distributed within the Acinetobacter population is unknown. In this study, Acinetobacter spp. were isolated from water samples at 14 sites of the whole course of the river Danube. Susceptibility testing was carried out for 14 clinically relevant antibiotics from six different antibiotic classes. Isolates showing a carbapenem resistance phenotype were screened with PCR and sequencing for the underlying resistance mechanism of carbapenem resistance. From the Danube river water, 262 Acinetobacter were isolated, the most common species was Acinetobacter baumannii with 135 isolates. Carbapenem and multiresistant isolates were rare but one isolate could be found which was only susceptible to colistin. The genetic background of carbapenem resistance was mostly based on typical Acinetobacter OXA enzymes but also on VIM-2. The population of Acinetobacter (baumannii and non-baumannii) revealed a significant proportion of human-generated antibiotic resistance and multiresistance, but the majority of the isolates stayed susceptible to most of the tested antibiotics.

Concepts: Bacteria, Antibiotic resistance, Penicillin, Acinetobacter baumannii, Acinetobacter, Romania, Danube, Danube Delta

0

Rivers extend in space and time under the influence of their catchment area. Our perception largely relies on discrete spatial and temporal observations carried out at certain sites located throughout the catchment (monitoring networks, MN). However, MNs are constrained by (a) the distribution of sampling sites, (b) the dynamics of the variable considered and © the river hydrological conditions. In this study, all three aspects were captured and quantified by applying a spatial autocorrelation modeling approach. We exemplarily studied its application to 235 emerging contaminants (pesticides, pharmaceuticals, and personal care products [PPCP], industrial and miscellaneous) measured at 55 sampling sites in the Danube River. 22 out of the 235 compounds monitored were present at all sites and 125 were found in at least 50%.We first calculated the Moran Index (MI) to characterize the spatial autocorrelation of the compound set. 59 compounds showed MI≤0, which can be interpreted as ‘no spatial correlation’. Next, spatial autocorrelation models were set for each compound. From the autocorrelation parameter ρ, catchment average correlation lengths were derived for each compound. MN optimality was examined and compounds were classified into three groups: (a) those with ρ≤0 [25%]; (b) those with ρ>0 and correl. length0 and correl. length>average distance between consecutive sites [73%]. The MN was considered optimal only for the latter class. Networks with the larger average distance between consecutive sites resulted in a decreasing number of optimally monitored compounds. Furthermore, neighbors vs. local relative contributions were quantified based on the spatial autocorrelation model for all the measured compounds. The results of this study show how autocorrelation models can aid water managers to improve the design of river MNs, which are a key aspect of the Water Framework Directive.

Concepts: European Union, River, Water Framework Directive, River Basin Management Plans, Rhine, Danube, Danube Delta

0

In the third Joint Danube Survey (JDS3), emerging organic contaminants were analysed in the dissolved water phase of samples from the Danube River and its major tributaries. Analyses were performed using solid-phase extraction (SPE) followed by ultra-high-pressure liquid chromatography triple-quadrupole mass spectrometry (UHPLC-MS-MS) and gas chromatography-mass spectrometry (GC-MS). The polar organic compounds analysed by UHPLC-MS-MS were 1H-benzotriazole, methylbenzotriazoles, carbamazepine, 10,11-dihydro-10,11-dihydroxy-carbamazepine, diclofenac, sulfamethox-azole, 2,4-D (2,4-dichlorophenoxyacetic acid), MCPA (2-methyl-4-chlorophenoxyacetic acid), metolachlor, cybutryne (irgarol), terbutryn, DEET (N,N-diethyl-m-toluamide), and several perfluoroalkyl acids (C6-C9; C8=perfluorooctanoic acid (PFOA)) and perfluorooctansulfonic acid (PFOS). In addition, several organophosphorus flame retardants were analysed by GC-MS. The most relevant compounds identified in the 71 water samples, in terms of highest median and maximum concentrations, were 1H-benzotriazole, tris(1-chloro-2-propyl)phosphate (TCPP), methylbenzotriazoles, carbama-zepine and its metabolite, DEET, sulfamethoxazole, tris(isobutyl)phosphate (TiBP), tris(2-chloroethyl)phosphate (TCEP), PFOA, PFOS and diclofenac. The concentrations of these compounds in the samples were generally below the environmental quality standard (EQS) threshold values, with the exception of PFOS, the concentration of which exceeded the annual average water EQS limit of 0.65ng/L along the whole river, and also exceeded the fish biota EQS of 9.1μg/kg. In addition, the proposed EQS for diclofenac, of 0.1μg/L, was exceeded in the Arges River in Romania (255ng/L).

Concepts: Protein, Mass spectrometry, Chromatography, Analytical chemistry, Romania, Danube, Danube Delta, Argeş River

0

Sediment management is of prior concern in the Danube Basin for provision of economic and environmental services. This study aimed at assessing current (1995-2009) sediment fluxes of the Danube Basin with SWAT model and identifying sediment budget knowledge gaps. After hydrologic calibration, hillslope gross erosion and sediment yields were broadly calibrated using ancillary data (measurements in plots and small catchments, and national and European erosion maps). Mean annual sediment concentrations (SSC) from 269 gauging stations (2968 station-year entries; median 19mg/L, interquartile range IQR 10-36mg/L) were used for calibrating in-stream sediments. SSC residuals (simulations-observations) median was 2mg/L (IQR -14; +22mg/L). In the validation dataset (172 gauging stations; 1457 data-entries, median 17mg/L, IQR 10-28), median residual was 9mg/L (IQR -9; +39mg/L). Percent bias in an independent dataset of annual sediment yields (SSY; 689 data-entries in 95 stations; median 52t/km(2)/y, IQR 20-151t/km(2)/y) was -21.5%. Overall, basin-wide model performance was considered satisfactory. Sediment fluxes appeared overestimated in some regions (Sava and Velika Morava), and underestimated in others (Siret-Prut and Romanian Danube), but unbiased elsewhere. According to the model, most sediments were generated by hillslope erosion. Streambank degradation contributed about 5% of sediments, and appeared important in high stream power Alpine reaches. Sediment trapping in reservoirs and floodplain deposition was probably underestimated and counterbalanced by high stream deposition. Factor analysis showed that model underestimations were correlated to Alpine and karst areas, whereas underestimations occurred in high seismicity areas of the Lower Danube. Contemporary sediment fluxes were about one third of values reported for the 1980s for several tributaries of the Middle and Lower Danube. Knowledge gaps affecting the sediment budget were identified in the contributions of some erosion processes (glacier erosion, gully erosion and mass movements), and in-stream sediment dynamics.

Concepts: River, Erosion, Serbia, Romania, Danube, Danube Delta, Great Morava, Rivers of Serbia

0

Following the radionuclide releases due to Chernobyl Nuclear Power Plant accident, various studies were completed by researchers all over the world in order to measure the surface contaminations by artificial radionuclides. The aim of this study was to evaluate (137)Cs surface contamination and to create an inventory distribution for Transylvania region (Romania) after the Chernobyl event using γ spectrometric measurements on soil samples collected from 153 locations. The results were compared to measured data from the Danube Delta and Moldova Republic, as well as to (137)Cs concentrations from the rest of Europe reported by literature. The (137)Cs surface concentrations in soil samples ranged between 0.4±0.1kBqm(-2) and 301.1±3.0kBqm(-2), having an average of 8.3±0.2kBqm(-2), with more elevated values in the mountain areas (18.3±0.6kBqm(-2)) compared to the hills and plains (2.6±0.1kBqm(-2)). Taking into consideration the cardinal regions, the northern and western regions received the least amount of (137)Cs (2.9±0.1kBqm(-2)), while the southern part received 16.3±0.6kBqm(-2). Sampling points with eastern slope exposure received the highest average (27.8±0.5kBqm(-2)), while southern, north-western and north-eastern ones received less than 8kBqm(-2). Two hotspots are reported at Iezer-Ighiel (72.7±5.9kBqm(-2)) and Tulgheș areas (51.5±0.6kBqm(-2)).

Concepts: Chernobyl disaster, Ukraine, Nuclear power, Radioactive contamination, Romania, Danube, Danube Delta, Moldavia