SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Cytochrome c

178

Etiology of aberrant social behavior consistently points to a strong polygenetic component involved in fundamental developmental pathways, with the potential of being enhanced by defects in bioenergetics. To this end, the occurrence of social deficits and mitochondrial outcomes were evaluated in conditional Pten (Phosphatase and tensin homolog) haplo-insufficient mice, in which only one allele was selectively knocked-out in neural tissues. Pten mutations have been linked to Alzheimer’s disease and syndromic autism spectrum disorders, among others. By 4-6 weeks of age, Pten insufficiency resulted in the increase of several mitochondrial Complex activities (II-III, IV and V) not accompanied by increases in mitochondrial mass, consistent with an activation of the PI3K/Akt pathway, of which Pten is a negative modulator. At 8-13 weeks of age, Pten haplo-insufficient mice did not show significant behavioral abnormalities or changes in mitochondrial outcomes, but by 20-29 weeks, they displayed aberrant social behavior (social avoidance, failure to recognize familiar mouse, and repetitive self-grooming), macrocephaly, increased oxidative stress, decreased cytochrome c oxidase (CCO) activity (50%) and increased mtDNA deletions in cerebellum and hippocampus. Mitochondrial dysfunction was the result of a downregulation of p53-signaling pathway evaluated by lower protein expression of p21 (65% of controls) and the CCO chaperone SCO2 (47% of controls), two p53-downstream targets. This mechanism was confirmed in Pten-deficient striatal neurons and, HCT 116 cells with different p53 gene dosage. These results suggest a unique pathogenic mechanism of the Pten-p53 axis in mice with aberrant social behavior: loss of Pten (via p53) impairs mitochondrial function elicited by an early defective assembly of CCO and later enhanced by the accumulation of mtDNA deletions. Consistent with our results, (i) SCO2 deficiency and/or CCO activity defects have been reported in patients with learning disabilities including autism and (ii) mutated proteins in ASD have been found associated with p53-signaling pathways.

Concepts: Gene, Mitochondrion, Oxidative phosphorylation, Autism, P53, Electron transport chain, Cytochrome c, PTEN

172

Cytochrome c oxidase is a member of the haem copper oxidase superfamily (HCO). HCOs function as the terminal enzymes in the respiratory chain of mitochondria and aerobic prokaryotes, coupling molecular oxygen reduction to transmembrane proton pumping. Integral to the enzyme’s function is the transfer of electrons from cytochrome c to the oxidase via a transient association of the two proteins. Electron entry and exit are proposed to occur from the same site on cytochrome c. Here we report the crystal structure of the caa3-type cytochrome oxidase from Thermus thermophilus, which has a covalently tethered cytochrome c domain. Crystals were grown in a bicontinuous mesophase using a synthetic short-chain monoacylglycerol as the hosting lipid. From the electron density map, at 2.36 Å resolution, a novel integral membrane subunit and a native glycoglycerophospholipid embedded in the complex were identified. Contrary to previous electron transfer mechanisms observed for soluble cytochrome c, the structure reveals the architecture of the electron transfer complex for the fused cupredoxin/cytochrome c domain, which implicates different sites on cytochrome c for electron entry and exit. Support for an alternative to the classical proton gate characteristic of this HCO class is presented.

Concepts: Electron, Bacteria, Adenosine triphosphate, Enzyme, Mitochondrion, Cellular respiration, Cytochrome c, Cytochrome c oxidase

171

Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer’s disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

Concepts: Alzheimer's disease, Metabolism, Adenosine triphosphate, Mitochondrion, Cellular respiration, Electron transport chain, Cytochrome c, Cytochrome c oxidase

169

The 5th outbreak of trichinosis occurred in a mountainous area of North Vietnam in 2012, involving 24 patients among 27 people who consumed raw pork together. Six of these patients visited several hospitals in Hanoi for treatment. Similar clinical symptoms appeared in these patients within 5-8 days after eating infected raw pork, which consisted of fever, muscle pain, difficult moving, edema, difficult swallowing, and difficult breathing. ELISA revealed all (6/6) positive reactions against Trichinella spiralis antigen and all cases showed positive biopsy results for Trichinella sp. larvae in the muscle. The larvae detected in the patients were identified as T. spiralis (Vietnamese strain) by the molecular analysis of the mitochondrial cytochrome c oxidase subunit III (cox3) gene.

Concepts: Vietnamese language, Trichinella spiralis, Cytochrome c, Vietnam, Trichinosis, Hanoi, French Indochina, Cytochrome c oxidase subunit III

168

The Ayurvedic medicinal system claims Mucuna pruriens (MP) to possess pro-male fertility, aphrodisiac and adaptogenic properties. Some scientific evidence also supports its pro-male fertility properties; however, the mechanism of its action is not yet clear. The present study aimed at demonstrating spermatogenic restorative efficacy of MP and its major constituent L-DOPA (LD), and finding the possible mechanism of action thereof in a rat model.

Concepts: Present, Mitochondrion, Organelle, Reactive oxygen species, Alternative medicine, Cytochrome c, Mucuna pruriens

34

In this double-blind, randomized, controlled trial we investigated the effects of vitamin C and E supplementation on endurance training adaptations in humans. Fifty-four young men and women were randomly allocated to receive either 1000 mg vitamin C and 235 mg vitamin E daily or a placebo for 11 weeks. During supplementation, the participants completed an endurance training programme consisting of 3-4 sessions per week (primarily running), divided into high intensity interval sessions (4-6x4-6 minutes; >90% of maximal heart rate (HRmax)) and steady state continuous sessions (30-60 minutes; 70-90% of HRmax). Maximal oxygen uptake (VO2max), submaximal running, and a 20 m shuttle run test were assessed and blood samples and muscle biopsies were collected, before and after the intervention. The vitamin C and E group increased their VO2max (8±5%) and performance in the 20 m shuttle test (10±11%) to the same degree as the placebo group (8±5% and 14±17%, respectively). However, the mitochondrial marker cytochrome c oxidase subunit IV (COX4; +59±97%) and cytosolic peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1alpha; +19±51%) increased in m. vastus lateralis in the placebo group, but not in the vitamin C and E group (COX4: -13±54%, PGC-1alpha: -13±29%; p≤0.03, between groups). Furthermore, mRNA levels of CDC42 and mitogen-activated protein kinase 1 (MAPK1) in the trained muscle were lower in the vitamin C and E group (p≤0.05, compared to the placebo group). Daily vitamin C and E supplementation attenuated increases in markers of mitochondrial biogenesis following endurance training. However, no clear interactions were detected for improvements in VO2max and running performance. Consequently, vitamin C and E supplementation hampered cellular adaptions in the exercised muscles, and although this was not translated to the performance tests applied in this study, we advocate caution when considering antioxidant supplementation combined with endurance exercise.

Concepts: Signal transduction, Metabolism, Adenosine triphosphate, Mitochondrion, Antioxidant, Exercise, Vitamin C, Cytochrome c

28

Global pollination is threatened by declining insect pollinator populations that may be linked to neonicotinoid pesticide use. Neonicotinoids over stimulate neurons and depolarize their mitochondria, producing immobility and death. However, mitochondrial function can be improved by near infrared light absorbed by cytochrome c oxidase in mitochondrial respiration. In flies, daily exposure to 670nm light throughout life increases average lifespan and aged mobility, and reduces systemic inflammation. Here we treat bumble bees with Imidacloprid a common neonicotinoid. This undermined ATP and rapidly induced immobility and reduced visual function and survival. Bees exposed to insecticide and daily to 670nm light showed corrected ATP levels and significantly improved mobility allowing them to feed. Physiological recordings from eyes revealed that light exposure corrected deficits induced by the pesticide. Overall, death rates in bees exposed to insecticide but also given 670nm light were indistinguishable from controls. When Imidacloprid and light exposure were withdrawn, survival was maintained. Bees and insects generally cannot see deep red light so it does not disturb their behaviour. Hence, we show that deep red light exposure that improves mitochondrial function, reverses the sensory and motor deficits induced by Imidacloprid. These results may have important implications as light delivery is economic and can be placed in hives/colonies.

Concepts: Mitochondrion, Insect, Cellular respiration, Pollinator decline, Bumblebee, Cytochrome c, Insecticide, Neonicotinoid

28

The textbook description of mitochondrial respiratory complexes (RCs) views them as free-moving entities linked by the mobile carriers coenzyme Q (CoQ) and cytochrome c (cyt c). This model (known as the fluid model) is challenged by the proposal that all RCs except complex II can associate in supercomplexes (SCs). The proposed SCs are the respirasome (complexes I, III, and IV), complexes I and III, and complexes III and IV. The role of SCs is unclear, and their existence is debated. By genetic modulation of interactions between complexes I and III and III and IV, we show that these associations define dedicated CoQ and cyt c pools and that SC assembly is dynamic and organizes electron flux to optimize the use of available substrates.

Concepts: Metabolism, Mitochondrion, Oxidative phosphorylation, Cellular respiration, Electron transport chain, Glycolysis, Cytochrome c, Cytochrome c oxidase

28

SUMMARY Following the recent description of microfilariae of a Cercopithifilaria sp. in a dog from Sicily, Italy, (herein after referred to as Cercopithifilaria sp. I), numerous skin samples were collected from dogs in the Mediterranean region. In addition to Cercopithifilaria sp. I (185·7 ± 7·2 μm long), microfilariae of 2 other species were identified, namely Cercopithifilaria grassii (651·7 ± 23·6 μm long) and a yet undescribed microfilaria, Cercopithifilaria sp. II (264·4 ± 20·2 μm long, with evident lateral alae). The morphological differentiation among the 3 species of dermal microfilariae was confirmed by differences in cytochrome c oxidase subunit 1 and ribosomal 12S sequences examined (mean level of interspecific pairwise distance of 11·4%, and 17·7%, respectively). Phylogenetic analyses were concordant in clustering these with other sequences of Cercopithifilaria spp. to the exclusion of Dirofilaria spp., Onchocerca spp. and Acanthocheilonema spp. Dermal microfilariae collected (n = 132) were morphologically identified as Cercopithifilaria sp. I (n = 108, 81·8%), Cercopithifilaria sp. II (n = 17, 12·9%), whereas only 7 (5·3%) were identified as C. grassii. Mixed infestations were detected in all sites examined. The great diversity of these neglected filarioids in dogs is of biological interest, considering the complex interactions occurring among hosts, ticks and Cercopithifilaria spp. in different environments.

Concepts: Species, Mediterranean Sea, Turkey, Dog, Mediterranean climate, Cytochrome c, Mediterranean Basin, History of the Mediterranean region

28

PURPOSE: Mantle cell lymphoma (MCL) is an incurable B-cell lymphoma, and new therapeutic strategies are urgently needed.EXPERIMENTAL DESIGN: The effects of ON 013105, a novel benzylstyryl sulfone kinase inhibitor, alone or with doxorubicin or rituximab, were examined in Granta 519 and Z138C cells. For in vivo studies, CB17/SCID mice were implanted subcutaneously with Z138C cells and treated with various combinations of ON 013105, doxorubicin, and rituximab. Tumor burden and body weight were monitored for 28 days.RESULTS: ON 013105 induced mitochondria-mediated apoptosis in MCL cells. Death was preceded by translocation of tBid to the mitochondria and cytochrome c release. In addition, ON 013105-treated cells exhibited reduced levels of cyclin D1, c-Myc, Mcl-1, and Bcl-xL. Using nuclear magnetic resonance (NMR) spectroscopy, we showed specific binding of ON 013105 to eIF4E, a critical factor for the initiation of protein translation. We proffer that this drug-protein interaction preferentially prevents the translation of the aforementioned proteins and may be the mechanism by which ON 013105 induces apoptosis in MCL cells. Efficacy studies in a mouse xenograft model showed that ON 013105 inhibited MCL tumor growth and that combining ON 013105 with rituximab reduced tumor burden further with negligible unwanted effects.CONCLUSIONS: Our findings suggest that ON 013105, alone or in combination with rituximab, may be a potent therapeutic agent to treat MCLs. Clin Cancer Res; 19(1); 1-11. ©2012 AACR.

Concepts: Protein, Cancer, Adenosine triphosphate, Nuclear magnetic resonance, Lymphoma, Bcl-2, Cytochrome c, Mantle cell lymphoma