Discover the most talked about and latest scientific content & concepts.

Concept: Crystallographic defect


Understanding radiation responses of Fe-based metals is essential to develop radiation tolerant steels for longer and safer life cycles in harsh reactor environments. Nanograined metals have been explored as self-healing materials due to point-defect recombination at grain boundaries. The fundamental defect-boundary interactions, however, are not yet well understood. We discover that the interactions are always mediated by formation and annealing of chain-like defects, which consist of alternately positioned interstitials and vacancies. These chain-like defects are closely correlated to the patterns of defect formation energy minima on the grain boundary, which depend on specific boundary configurations. Through chain-like defects, a point defect effectively translates large distances, to annihilate with its opposite, thus grain boundaries act as highly efficient defect sinks that cannot saturate under extreme radiation conditions.

Concepts: Electron, Materials science, Metallurgy, Steel, Crystallographic defect, Gamma ray


Several complications have been reported regarding the percutaneous closure of secondary atrial septal defects such as erosion, thromboembolic events, arrhythmias, and endocarditis. In this report, we describe the case of a 75-year-old woman who underwent percutaneous closure of a secondary atrial septal defect with a 12 mm Amplatzer septal occluder. Six months after the uneventful implantation of the device, we manifested an asymptomatic late embolization of the device in the abdominal aorta. The device was surgically retrieved.

Concepts: Surgery, Report, Abdominal aorta, Crystallographic defect, Ventricular septal defect, Atrial septal defect, Levo-Transposition of the great arteries, Cardiac shunt


Y-shaped ZnO nanobelts are fabricated by a simple thermal evaporation method. Transmission Electron Microscopy (TEM) investigation shows that these ZnO nanobelts are crystals with twinned planes {11-21}. Convergent Beam Electron Diffraction studies show that the two sides of twinned nanobelts are O-terminated towards the twinned boundary and Zn-terminated outwards. The two branches of twinned ZnO nanobelts grow along [11-26] from the trunk and then turn to the polarization direction [0001]. The featured Y-shape morphology and TEM characterizations indicate that the growth of these novel nanostructures is driven by an unusual twinned dislocation growth mechanism.

Concepts: Electron, Crystal structure, Fundamental physics concepts, Electromagnetic radiation, Transmission electron microscopy, Scanning electron microscope, Crystallographic defect, Electron diffraction


Although broadly admired for its aesthetic qualities, the art of origami is now being recognized also as a framework for mechanical metamaterial design. Working with the Miura-ori tessellation, we find that each unit cell of this crease pattern is mechanically bistable, and by switching between states, the compressive modulus of the overall structure can be rationally and reversibly tuned. By virtue of their interactions, these mechanically stable lattice defects also lead to emergent crystallographic structures such as vacancies, dislocations, and grain boundaries. Each of these structures comes from an arrangement of reversible folds, highlighting a connection between mechanical metamaterials and programmable matter. Given origami’s scale-free geometric character, this framework for metamaterial design can be directly transferred to milli-, micro-, and nanometer-size systems.

Concepts: Crystal structure, Crystallography, Symmetry, Materials science, Crystal system, Crystallographic defect, Origami, Crease pattern


A wide variety of industrial applications require materials with high strength and ductility. Unfortunately, the strategies for increasing material strength, such as processing to create line defects (dislocations), tend to decrease ductility. We developed a strategy to circumvent this in inexpensive, medium Mn steel. Cold rolling followed by low-temperature tempering developed steel with metastable austenite grains embedded in a highly dislocated martensite matrix. This deformed and partitioned (D&P) process produced dislocation hardening, but retained high ductility both through the glide of intensive mobile dislocations and by allowing us to control martensitic transformation. The D&P strategy should apply to any other alloy with deformation-induced martensitic transformation and provides a pathway for development of high strength, high ductility materials.

Concepts: Tensile strength, Steel, Austenite, Crystallographic defect, Work hardening, Martensite, Cementite, Tempering


The ability to obtain three-dimensional (3-D) information about morphologies of nanostructures elucidates many interesting properties of materials in both physical and biological sciences. Here we demonstrate a novel method in scanning transmission electron microscopy (STEM) that gives a fast and reliable assessment of the 3-D configuration of curvilinear nanostructures, all without needing to tilt the sample through an arc. Using one-dimensional crystalline defects known as dislocations as a prototypical example of a complex curvilinear object, we demonstrate their 3-D reconstruction two orders of magnitude faster than by standard tilt-arc TEM tomographic techniques, from data recorded by selecting different ray paths of the convergent STEM probe. Due to its speed and immunity to problems associated with a tilt arc, the tilt-less 3-D imaging offers important advantages for investigations of radiation-sensitive, polycrystalline, or magnetic materials. Further, by using a segmented detector, the total electron dose is reduced to a single STEM raster scan acquisition; our tilt-less approach will therefore open new avenues for real-time 3-D electron imaging of dynamic processes.

Concepts: Electron, Magnetic field, Biology, Species, Magnetism, Vector space, Transmission electron microscopy, Crystallographic defect


Bi2Se3 initially emerged as a particularly promising host of topological physics. However, in actual materials, several issues have been uncovered including strong surface band bending and potential fluctuations. To investigate these concerns, we study nominally stoichiometric Bi2Se3 using scanning tunnelling microscopy. Here we identify two distinct distributions of BiSe antisites that act as nanometer-scale sensors for the surface band-bending field. To confirm this, we examine bulk Cu-doped Bi2Se3 and demonstrate a significantly reduced surface band-bending field. In addition, we find that in the case of unintentionally doped Bi2Se3, lateral fluctuations of the Dirac point can be directly correlated with specific near-surface point defects, namely Se vacancies.

Concepts: Quantum mechanics, Fundamental physics concepts, Quantum field theory, Real number, Microscopy, Crystallographic defect, ACT, Ring


Dislocations, one of the key entities in materials science, govern the properties of any crystalline material. Thus, understanding their life cycle, from creation to annihilation via motion and interaction with other dislocations, point defects and surfaces, is of fundamental importance. Unfortunately, atomic-scale investigations of dislocation evolution in a bulk object are well beyond the spatial and temporal resolution limits of current characterization techniques. Here we overcome the experimental limits by investigating the two-dimensional graphene in an aberration-corrected transmission electron microscope, exploiting the impinging energetic electrons both to image and stimulate atomic-scale morphological changes in the material. The resulting transformations are followed in situ, atom-by-atom, showing the full life cycle of a dislocation from birth to annihilation. Our experiments, combined with atomistic simulations, reveal the evolution of dislocations in two-dimensional systems to be governed by markedly long-ranging out-of-plane buckling.

Concepts: Electron, Electron microscope, Crystal, Crystal structure, Chemistry, Materials science, Scanning electron microscope, Crystallographic defect


Photocatalysis is a promising advanced water treatment technology, and recently the possibility of using hydrogenation to improve the photocatalytic efficiency of titanium dioxide has generated much research interest. Herein we report that the use of high temperature hydro-genation to prepare black TiO2 primarily results in the for-mation of bulk defects in the material without affecting its electronic band structure. The hydrogenated TiO2 exhibited significantly worse photocatalytic activity under simulated sunlight compared to the unhydrogenated control, and thus we propose that high temperature hydrogenation can be counterproductive to improving the photocatalytic activity of TiO2, due to its propensity to form bulk vacancy defects.

Concepts: Titanium dioxide, Titanium, Pigment, Photocatalysis, Crystallographic defect, Anatase, Electronic band structure, Band gap


Thermoelectric figure-of-merits (ZT) are enhanced or degraded by crystal defects such as twins and excess atoms that are correlated with thermal conductivity (k) and carrier concentration (n). For Bi2Te3, it is unclear whether the crystal defects can enhance ZT without a degradation in the thermopower factor. In the present study, n-type Bi2Te3 nanowires (NWs) are electrochemically synthesized to have twin-free (TF) or twin-containing (TC) microstructures with a ZT of 0.10 and 0.08, respectively, at 300 K. The ZTs of TF and TC NWs remarkably increase up to 0.21 and 0.31, when heat-treatments cause n-reduction and twins induce phonon scattering, as follows: first, the enhancement of the Seebeck coefficient from -70 to -98 μV K(-1) for TF NWs and from -57 to -143 μV K(-1) for TC NWs, by virtue of n-reduction; secondly, twin-driven k-reduction from 1.9 to 1.4 W m(-1) K(-1) of TC NWs, while the k of TF NWs increases from 2.3 to 2.6 W m(-1) K(-1) due to the enhanced carrier mobility. The lattice thermal conductivities of TC NW are lowered from 1.1 to 0.8 W m(-1) K(-1) by phonon scattering at twins. Density functional theory calculations indicate that twins do not significantly influence the Seebeck coefficient of Bi2Te3. It is strongly recommended that twins be incorporated with an optimum carrier concentration to enhance the ZT of Bi2Te3.

Concepts: Crystal, Density functional theory, Semiconductor, Materials science, Crystallographic defect, Land degradation, Thermoelectric effect