Discover the most talked about and latest scientific content & concepts.

Concept: Crystalline silicon


Fabrication of thin-film solar cells (TFSCs) on substrates other than Si and glass has been challenging because these nonconventional substrates are not suitable for the current TFSC fabrication processes due to poor surface flatness and low tolerance to high temperature and chemical processing. Here, we report a new peel-and-stick process that circumvents these fabrication challenges by peeling off the fully fabricated TFSCs from the original Si wafer and attaching TFSCs to virtually any substrates regardless of materials, flatness and rigidness. With the peel-and-stick process, we integrated hydrogenated amorphous silicon (a-Si:H) TFSCs on paper, plastics, cell phone and building windows while maintaining the original 7.5% efficiency. The new peel-and-stick process enables further reduction of the cost and weight for TFSCs and endows TFSCs with flexibility and attachability for broader application areas. We believe that the peel-and-stick process can be applied to thin film electronics as well.

Concepts: Semiconductor, Silicon, Solar cell, Photovoltaics, Dye-sensitized solar cell, Thin film solar cell, Crystalline silicon, Amorphous silicon


Unusual mechanical properties of mechanical metamaterials are determined by their carefully designed and tightly controlled geometry at the macro- or nanoscale. We introduce a class of nanoscale mechanical metamaterials created by forming continuous corrugated plates out of ultrathin films. Using a periodic three-dimensional architecture characteristic of mechanical metamaterials, we fabricate free-standing plates up to 2 cm in size out of aluminium oxide films as thin as 25 nm. The plates are formed by atomic layer deposition of ultrathin alumina films on a lithographically patterned silicon wafer, followed by complete removal of the silicon substrate. Unlike unpatterned ultrathin films, which tend to warp or even roll up because of residual stress gradients, our plate metamaterials can be engineered to be extremely flat. They weigh as little as 0.1 g cm(-2) and have the ability to ‘pop-back’ to their original shape without damage even after undergoing multiple sharp bends of more than 90°.

Concepts: Oxygen, Engineering, Aluminium, Semiconductor, Mechanical engineering, Crystalline silicon, Aluminium oxide, Silicon on insulator


We present ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell structure, which can transmit desired color of light. The transmitted colors show great angular tolerance due to the negligible optical phase associated with light propagating in ultra-thin amorphous silicon (a-Si) layers. We achieved the power conversion efficiency of the hybrid cells up to 2 %; and demonstrated that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges due to the suppressed electron-hole recombination in the ultra-thin a-Si layer. We also show the resonance is invariant with respect to the angle of incidence up to ±70° regardless of the polarization of the incident light. Our exploration provides a design to realize energy harvesting colored photovoltaic panels for innovative applications.

Concepts: Energy, Optics, Light, Color, Solar cell, Photovoltaic module, Crystalline silicon, Amorphous silicon


Materials providing broadband light antireflection have applications as highly transparent window coatings, military camouflage, and coatings for efficiently coupling light into solar cells and out of light-emitting diodes. In this work, densely packed silicon nanotextures with feature sizes smaller than 50 nm enhance the broadband antireflection compared with that predicted by their geometry alone. A significant fraction of the nanotexture volume comprises a surface layer whose optical properties differ substantially from those of the bulk, providing the key to improved performance. The nanotexture reflectivity is quantitatively well-modelled after accounting for both its profile and changes in refractive index at the surface. We employ block copolymer self-assembly for precise and tunable nanotexture design in the range of ~10-70 nm across macroscopic solar cell areas. Implementing this efficient antireflection approach in crystalline silicon solar cells significantly betters the performance gain compared with an optimized, planar antireflection coating.

Concepts: Solar cell, Wafer, Germanium, Diode, Crystalline silicon, Amorphous silicon, P-n junction, Nanocrystalline silicon


The uniform growth of single-crystal graphene over wafer-scale areas remains a challenge in the commercial-level manufacturability of various electronic, photonic, mechanical, and other devices based on graphene. Here, we describe wafer-scale growth of wrinkle-free single-crystal monolayer graphene on silicon wafer using a hydrogen-terminated germanium buffer layer. The anisotropic twofold symmetry of the germanium (110) surface allowed unidirectional alignment of multiple seeds, which were merged to uniform single-crystal graphene with predefined orientation. Furthermore, the weak interaction between graphene and underlying hydrogen-terminated germanium surface enabled the facile etch-free dry transfer of graphene and the recycling of the germanium substrate for continual graphene growth.

Concepts: Semiconductor, Silicon, Solar cell, Czochralski process, Germanium, Crystalline silicon, Seed crystal, Diamond cubic


Understanding the phase separation mechanism of solid-state binary compounds induced by laser-material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system.

Concepts: Electron, Carbon, Silicon, Solid, Solar cell, Crystalline silicon, Amorphous silicon, Nanocrystalline silicon


Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors.

Concepts: Silicon, Solar cell, Pressure, Gas, Chemical vapor deposition, Photovoltaic module, Crystalline silicon, Amorphous silicon


Amorphous Si (a-Si) shows potential advantages over crystalline Si (c-Si) in lithium-ion batteries, owing to its high lithiation potential and good tolerance to intrinsic strain/stress. Herein, porous a-Si has been synthesized by a simple process, without the uses of dangerous or expensive reagents, sophisticated equipment, and strong acids that potential cause environment risks. These porous a-Si particles exhibit excellent electrochemical performances, owing to their porous structure, amorphous nature, and surface modification. They deliver a capacity of 1025 mAh g(-1) at 3 A g(-1) after 700 cycles. Moreover, the reversible capacity after electrochemical activation, is quite stable throughout the cycling, resulting in a capacity retention about around 88 %. The direct comparison between a-Si and c-Si anodes clearly supports the advantages of a-Si in lithium-ion batteries.

Concepts: Electrochemistry, Silicon, Battery, Electrolysis, Anode, Crystalline silicon, Amorphous silicon


One-dimensional crystal growth allows the epitaxial integration of compound semiconductors on silicon (Si), as the large lattice-mismatch strain arising from heterointerfaces can be laterally relieved. Here, we report the direct heteroepitaxial growth of mixed anion ternary InAsyP1-y nanowire array across an entire 2 inch Si wafer with unprecedented spatial, structural, and special uniformity across the entire 2 inch wafer and dramatic improvements in aspect ratio (>100) and area density (>5 × 10(8)/cm(2)). Heterojunction solar cells consisting of n-type InAsyP1-y (y = 0.75) and p-type Si achieve a conversion efficiency of 3.6 % under Air Mass 1.5 illumination. This work demonstrates the potential for large scale production of these nanowires for heterogeneous integration of optoelectronic devices.

Concepts: Density, Semiconductor, Silicon, Solar cell, Czochralski process, Germanium, Crystalline silicon, Semiconductors


Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as < 4% over a broad wavelength range of 400 nm < λ < 650 nm. These anti-reflective properties together with enhanced infrared absorption in the core-shell nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices.

Concepts: Nanoparticle, Silicon, Nanowire, Solar cell, Germanium, Crystalline silicon, Amorphous silicon, Nanocrystalline silicon