SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Crotalus

183

Predation plays a central role in the lives of most organisms. Predators must find and subdue prey to survive and reproduce, whereas prey must avoid predators to do the same. The resultant antagonistic coevolution often leads to extreme adaptations in both parties. Few examples capture the imagination like a rapid strike from a venomous snake. However, almost nothing is known about strike performance of viperid snakes under natural conditions. We obtained high-speed (500 fps) three-dimensional video in the field (at night using infrared lights) of Mohave rattlesnakes (Crotalus scutulatus) attempting to capture Merriam’s kangaroo rats (Dipodomys merriami). Strikes occurred from a range of distances (4.6 to 20.6 cm), and rattlesnake performance was highly variable. Missed capture attempts resulted from both rapid escape maneuvers and poor strike accuracy. Maximum velocity and acceleration of some rattlesnake strikes fell within the range of reported laboratory values, but some far exceeded most observations. Thus, quantifying rapid predator-prey interactions in the wild will propel our understanding of animal performance.

Concepts: Predation, Lotka–Volterra equation, Velocity, Cat, Rattlesnake, Crotalinae, Snake, Crotalus

181

BACKGROUND: Vertebrate predators use a broad arsenal of behaviors and weaponry for overcoming fractious and potentially dangerous prey. A unique array of predatory strategies occur among snakes, ranging from mechanical modes of constriction and jaw-holding in non-venomous snakes, to a chemical means, venom, for quickly dispatching prey. However, even among venomous snakes, different prey handling strategies are utilized, varying from the strike-and-hold behaviors exhibited by highly toxic elapid snakes to the rapid strike-and-release envenomation seen in viperid snakes. For vipers, this mode of envenomation represents a minimal risk predatory strategy by permitting little contact with or retaliation from prey, but it adds the additional task of relocating envenomated prey which has wandered from the attack site. This task is further confounded by trails of other unstruck conspecific or heterospecific prey. Despite decades of behavioral study, researchers still do not know the molecular mechanism which allows for prey relocation. RESULTS: During behavioral discrimination trials (vomeronasal responsiveness) to euthanized mice injected with size-fractionated venom, Crotalus atrox responded significantly to only one protein peak. Assays for enzymes common in rattlesnake venoms, such as exonuclease, L-amino acid oxidase, metalloproteinase, thrombin-like and kallikrein-like serine proteases and phospholipase A2, showed that vomeronasal responsiveness was not dependent on enzymatic activity. Using mass spectrometry and N-terminal sequencing, we identified the proteins responsible for envenomated prey discrimination as the non-enzymatic disintegrins crotatroxin 1 and 2. Our results demonstrate a novel and critical biological role for venom disintegrins far beyond their well-established role in disruption of cell-cell and cell-extracellular matrix interactions. CONCLUSIONS: These findings reveal the evolutionary significance of free disintegrins in venoms as the molecular mechanism in vipers allowing for effective relocation of envenomated prey. The presence of free disintegrins in turn has led to evolution of a major behavioral adaptation (strike-and-release), characteristic of only rattlesnakes and other vipers, which exploits and refines the efficiency of a pre-existing chemical means of predation and a highly sensitive olfaction system. This system of a predator chemically tagging prey represents a novel trend in the coevolution of predator-prey relationships.

Concepts: Predation, Venom, Snake, Antivenom, Crotalus

167

BACKGROUND: Understanding the processes that drive the evolution of snake venom is a topic of great research interest in molecular and evolutionary toxinology. Recent studies suggest that ontogenetic changes in venom composition are genetically controlled rather than environmentally induced. However, the molecular mechanisms underlying these changes remain elusive. Here we have explored the basis and level of regulation of the ontogenetic shift in the venom composition of the Central American rattlesnake, Crotalus s. simus using a combined proteomics and transcriptomics approach. RESULTS: Proteomic analysis showed that the ontogenetic shift in the venom composition of C. s. simus is essentially characterized by a gradual reduction in the expression of serine proteinases and PLA2 molecules, particularly crotoxin, a beta-neurotoxic heterodimeric PLA2, concominantly with an increment of PI and PIII metalloproteinases at age 9–18 months. Comparison of the transcriptional activity of the venom glands of neonate and adult C. s. simus specimens indicated that their transcriptomes exhibit indistinguisable toxin family profiles, suggesting that the elusive mechanism by which shared transcriptomes generate divergent venom phenotypes may operate post-transcriptionally. Specifically, miRNAs with frequency count of 1000 or greater exhibited an uneven distribution between the newborn and adult datasets. Of note, 590 copies of a miRNA targeting crotoxin B-subunit was exclusively found in the transcriptome of the adult snake, whereas 1185 copies of a miRNA complementary to a PIII-SVMP mRNA was uniquely present in the newborn dataset. These results support the view that age-dependent changes in the concentration of miRNA modulating the transition from a crotoxin-rich to a SVMP-rich venom from birth through adulhood can potentially explain what is observed in the proteomic analysis of the ontogenetic changes in the venom composition of C. s. simus. CONCLUSIONS: Existing snake venom toxins are the result of early recruitment events in the Toxicofera clade of reptiles by which ordinary genes were duplicated, and the new genes selectively expressed in the venom gland and amplified to multigene families with extensive neofunctionalization throughout the approximately 112–125 million years of ophidian evolution. Our findings support the view that understanding the phenotypic diversity of snake venoms requires a deep knowledge of the mechanisms regulating the transcriptional and translational activity of the venom gland. Our results suggest a functional role for miRNAs. The impact of specific miRNAs in the modulation of venom composition, and the integration of the mechanisms responsible for the generation of these miRNAs in the evolutionary landscape of the snake’s venom gland, are further challenges for future research.

Concepts: Gene, Gene expression, RNA, Venom, Snake, Toxins, Snake venom, Crotalus

35

Morphological data are a conduit for the recognition and description of species, and their acquisition has recently been broadened by geometric morphometric (GM) approaches that co-join the collection of digital data with exploratory ‘big data’ analytics. We employed this approach to dissect the Western Rattlesnake (Crotalus viridis) species-complex in North America, currently partitioned by mitochondrial (mt)DNA analyses into eastern and western lineages (two and seven subspecies, respectively). The GM data (i.e., 33 dorsal and 50 lateral head landmarks) were gleaned from 2,824 individuals located in 10 museum collections. We also downloaded and concatenated sequences for six mtDNA genes from the NCBI GenBank database. GM analyses revealed significant head shape differences attributable to size and subspecies-designation (but not their interactions). Pairwise shape distances among subspecies were significantly greater than those derived from ancestral character states via squared-change parsimony, with the greatest differences separating those most closely related. This, in turn, suggests the potential for historic character displacement as a diversifying force in the complex. All subspecies, save one, were significantly differentiated in a Bayesian discriminant function analysis (DFA), regardless of whether our priors were uniform or informative (i.e., mtDNA data). Finally, shape differences among sister-clades were significantly greater than expected by chance alone under a Brownian model of evolution, promoting the hypothesis that selection rather than drift was the driving force in the evolution of the complex. Lastly, we combine head shape and mtDNA data so as to derived an integrative taxonomy that produced robust boundaries for six OTUs (operational taxonomic units) of the C. viridis complex. We suggest these boundaries are concomitant with species-status and subsequently provide a relevant nomenclature for its recognition and representation.

Concepts: DNA, Scientific method, Evolution, Species, Taxonomy, Binomial nomenclature, Taxonomic rank, Crotalus

28

BACKGROUND: Snake venoms have significant impacts on human populations through the morbidity and mortality associated with snakebites and as sources of drugs, drug leads, and physiological research tools. Genes expressed by venom-gland tissue, including those encoding toxic proteins, have therefore been sequenced but only with relatively sparse coverage resulting from the low-throughput sequencing approaches available. High-throughput approaches based on 454 pyrosequencing have recently been applied to the study of snake venoms to give the most complete characterizations to date of the genes expressed in active venom glands, but such approaches are costly and still provide a far-from-complete characterization of the genes expressed during venom production. RESULTS: We describe the de novo assembly and analysis of the venom-gland transcriptome of an eastern diamondback rattlesnake (Crotalus adamanteus) based on 95,643,958 pairs of quality-filtered, 100-base-pair Illumina reads. We identified 123 unique, full-length toxin-coding sequences, which cluster into 78 groups with less than 1% nucleotide divergence, and 2,879 unique, full-length nontoxin coding sequences. The toxin sequences accounted for 35.4% of the total reads, and the nontoxin sequences for an additional 27.5%. The most highly expressed toxin was a small myotoxin related to crotamine, which accounted for 5.9% of the total reads. Snake-venom metalloproteinases accounted for the highest percentage of reads mapping to a toxin class (24.4%), followed by C-type lectins (22.2%) and serine proteinases (20.0%). The most diverse toxin classes were the C-type lectins (21 clusters), the snake-venom metalloproteinases (16 clusters), and the serine proteinases (14 clusters). The high-abundance nontoxin transcripts were predominantly those involved in protein folding and translation, consistent with the protein-secretory function of the tissue. CONCLUSIONS: We have provided the most complete characterization of the genes expressed in an active snake venom gland to date, producing insights into snakebite pathology and guidance for snakebite treatment for the largest rattlesnake species and arguably the most dangerous snake native to the United States of America, C. adamanteus. We have more than doubled the number of sequenced toxins for this species and created extensive genomic resources for snakes based entirely on de novo assembly of Illumina sequence data.

Concepts: Snakebite, Toxin, Venom, Snake, Toxins, Crotalus adamanteus, Snake venom, Crotalus

27

Hepatozoon spp. are commonly found infecting snakes. Since the latter are parasitized by diverse forms and data in the literature show divergence, we studied Hepatozoon spp. diversity on Crotalus durissus terrificus snakes using both molecular and morphological approaches. Naturally infected animals were employed. Blood was collected, blood smears were prepared and an aliquot was stored at -20°C for DNA extraction. Five specimens of C. durissus terrificus were selected, each of them infected with one gamont type. Morphological and morphometric analyses of the found gamonts led to their grouping into three populations. For molecular characterization, seven oligonucleotide pairs that amplify distinct regions of rDNA gene were tested by adopting the PCR technique. Only the oligonucleotide pairs HepF300/Hep900 and HEMO1/HEMO2 were efficient in amplifying and distinguishing different isolates of Hepatozoon spp. from snakes. The better results were obtained when both oligonucleotide pairs were used in association. Based on the molecular and morphologic differences, three new species were proposed: Hepatozoon cuestensis sp. nov.; Hepatozoon cevapii sp. nov. and Hepatozoon massardii sp. nov. This is the first description of new Hepatozoon species from snakes, based on molecular characterization and morphological data, in South America.

Concepts: DNA, Polymerase chain reaction, Molecular biology, Biology, Apicomplexa, Crotalus, Crotalus durissus, Hepatozoon

27

A 5' truncated snake venom metalloproteinase was identified from a cDNA library constructed from venom glands of an eastern diamondback rattlesnake (Crotalus adamanteus). The 5'-rapid amplification of cDNA ends (RACE) was used to obtain the 1865 bp full-length cDNA sequence of a snake venom metalloproteinase (CamVMPII). CamVMPII encodes an open reading frame of 488 amino acids, which includes a signal peptide, a pro-domain, a metalloproteinase domain, a spacer, and an RGD-disintegrin domain. The predicted amino acid sequence of CamVMPII showed a 91%, 90%, 83%, and 82% sequence homology to the P-II class enzymes of C. adamanteus metalloproteinase 2, C. atrox CaVMP-II, Gloydius halys agkistin, and Protobothrops jerdonii jerdonitin, respectively. Disintegrins are potent inhibitors of both platelet aggregation and integrin-dependent cell adhesion. Therefore, the disintegrin domain (Cam-dis) of CamVMPII was amplified by PCR, cloned into a pET-43.1a vector, and expressed in Escherichia coli BL21. Affinity purified recombinantly modified Cam-dis (r-Cam-dis) with a yield of 8.5 mg/L culture medium was cleaved from the fusion tags by enterokinase cleavage. r-Cam-dis was further purified by two-step chromatography consisting of HiTrap™ Benzamidine FF column, followed by Talon Metal affinity column with a final yield of 1 mg/L culture. r-Cam-dis was able to inhibit all three processes of platelet thrombus formation including platelet adhesion with an estimated IC(50) of 1 nM, collagen- and ADP-induced platelet aggregation with the estimated IC(50)s of 18 and 6 nM, respectively, and platelet function on clot retraction. It is a potent anti-platelet inhibitor, which should be further investigated for drug discovery to treat stroke patients or patients with thrombotic disorders.

Concepts: DNA, Protein, Bacteria, Amino acid, Acid, Snakebite, Crotalus adamanteus, Crotalus

23

Limbless organisms such as snakes can navigate nearly all terrain. In particular, desert-dwelling sidewinder rattlesnakes (Crotalus cerastes) operate effectively on inclined granular media (such as sand dunes) that induce failure in field-tested limbless robots through slipping and pitching. Our laboratory experiments reveal that as granular incline angle increases, sidewinder rattlesnakes increase the length of their body in contact with the sand. Implementing this strategy in a physical robot model of the snake enables the device to ascend sandy slopes close to the angle of maximum slope stability. Plate drag experiments demonstrate that granular yield stresses decrease with increasing incline angle. Together, these three approaches demonstrate how sidewinding with contact-length control mitigates failure on granular media.

Concepts: Crotalinae, Snake, Sand, Dune, Crotalus, Keeled scales, Cable railway, Crotalus cerastes

9

Ecosystems transition quickly in the Anthropocene, whereas biodiversity adapts more slowly. Here we simulated a shifting woodland ecosystem on the Colorado Plateau of western North America by using as its proxy over space and time the fundamental niche of the Arizona black rattlesnake (Crotalus cerberus). We found an expansive (= end-of-Pleistocene) range that contracted sharply (= present), but is blocked topographically by Grand Canyon/Colorado River as it shifts predictably northwestward under moderate climate change (= 2080). Vulnerability to contemporary wildfire was quantified from available records, with forested area reduced more than 27% over 13 years. Both ‘ecosystem metrics’ underscore how climate and wildfire are rapidly converting the Plateau ecosystem into novel habitat. To gauge potential effects on C. cerberus, we derived a series of relevant ‘conservation metrics’ (i.e. genetic variability, dispersal capacity, effective population size) by sequencing 118 individuals across 846 bp of mitochondrial (mt)DNA-ATPase8/6. We identified five significantly different clades (net sequence divergence = 2.2%) isolated by drainage/topography, with low dispersal (F ST = 0.82) and small sizes (2N ef = 5.2). Our compiled metrics (i.e. small-populations, topographic-isolation, low-dispersal versus conserved-niche, vulnerable-ecosystem, dispersal barriers) underscore the susceptibility of this woodland specialist to a climate and wildfire tandem. We offer adaptive management scenarios that may counterbalance these metrics and avoid the extirpation of this and other highly specialized, relictual woodland clades.

Concepts: Biodiversity, Climate, Ecosystem, Climate change, Forest, Population genetics, North America, Crotalus

5

The genetic origin of novel traits is a central but challenging puzzle in evolutionary biology. Among snakes, phospholipase A2 (PLA2)-related toxins have evolved in different lineages to function as potent neurotoxins, myotoxins, or hemotoxins. Here, we traced the genomic origin and evolution of PLA2 toxins by examining PLA2 gene number, organization, and expression in both neurotoxic and non-neurotoxic rattlesnakes. We found that even though most North American rattlesnakes do not produce neurotoxins, the genes of a specialized heterodimeric neurotoxin predate the origin of rattlesnakes and were present in their last common ancestor (∼22 mya). The neurotoxin genes were then deleted independently in the lineages leading to the Western Diamondback (Crotalus atrox) and Eastern Diamondback (C. adamanteus) rattlesnakes (∼6 mya), while a PLA2 myotoxin gene retained in C. atrox was deleted from the neurotoxic Mojave rattlesnake (C. scutulatus; ∼4 mya). The rapid evolution of PLA2 gene number appears to be due to transposon invasion that provided a template for non-allelic homologous recombination.

Concepts: DNA, Gene, Genetics, Bacteria, Evolution, Biology, Toxin, Crotalus