Discover the most talked about and latest scientific content & concepts.

Concept: Critical thinking


Almost 150 years after the first identification of Neandertal skeletal material, the cognitive and symbolic abilities of these populations remain a subject of intense debate. We present 99 new Neandertal remains from the Troisième caverne of Goyet (Belgium) dated to 40,500-45,500 calBP. The remains were identified through a multidisciplinary study that combines morphometrics, taphonomy, stable isotopes, radiocarbon dating and genetic analyses. The Goyet Neandertal bones show distinctive anthropogenic modifications, which provides clear evidence for butchery activities as well as four bones having been used for retouching stone tools. In addition to being the first site to have yielded multiple Neandertal bones used as retouchers, Goyet not only provides the first unambiguous evidence of Neandertal cannibalism in Northern Europe, but also highlights considerable diversity in mortuary behaviour among the region’s late Neandertal population in the period immediately preceding their disappearance.

Concepts: Belgium, Northern Europe, Neanderthal, Carbon-14, Psychology, Critical thinking, Radiocarbon dating, Isotope


Eye gaze is a window onto cognitive processing in tasks such as spatial memory, linguistic processing, and decision making. We present evidence that information derived from eye gaze can be used to change the course of individuals' decisions, even when they are reasoning about high-level, moral issues. Previous studies have shown that when an experimenter actively controls what an individual sees the experimenter can affect simple decisions with alternatives of almost equal valence. Here we show that if an experimenter passively knows when individuals move their eyes the experimenter can change complex moral decisions. This causal effect is achieved by simply adjusting the timing of the decisions. We monitored participants' eye movements during a two-alternative forced-choice task with moral questions. One option was randomly predetermined as a target. At the moment participants had fixated the target option for a set amount of time we terminated their deliberation and prompted them to choose between the two alternatives. Although participants were unaware of this gaze-contingent manipulation, their choices were systematically biased toward the target option. We conclude that even abstract moral cognition is partly constituted by interactions with the immediate environment and is likely supported by gaze-dependent decision processes. By tracking the interplay between individuals, their sensorimotor systems, and the environment, we can influence the outcome of a decision without directly manipulating the content of the information available to them.

Concepts: Causality, Critical thinking, Morality, Cognitive psychology, Brain, Psychology, Decision making, Cognition


Received academic wisdom holds that human judgment is characterized by unrealistic optimism, the tendency to underestimate the likelihood of negative events and overestimate the likelihood of positive events. With recent questions being raised over the degree to which the majority of this research genuinely demonstrates optimism, attention to possible mechanisms generating such a bias becomes ever more important. New studies have now claimed that unrealistic optimism emerges as a result of biased belief updating with distinctive neural correlates in the brain. On a behavioral level, these studies suggest that, for negative events, desirable information is incorporated into personal risk estimates to a greater degree than undesirable information (resulting in a more optimistic outlook). However, using task analyses, simulations, and experiments we demonstrate that this pattern of results is a statistical artifact. In contrast with previous work, we examined participants' use of new information with reference to the normative, Bayesian standard. Simulations reveal the fundamental difficulties that would need to be overcome by any robust test of optimistic updating. No such test presently exists, so that the best one can presently do is perform analyses with a number of techniques, all of which have important weaknesses. Applying these analyses to five experiments shows no evidence of optimistic updating. These results clarify the difficulties involved in studying human ‘bias’ and cast additional doubt over the status of optimism as a fundamental characteristic of healthy cognition.

Concepts: Philosophy of life, Scientific method, Statistics, Pessimism, Motivation, Optimism, Critical thinking, Psychology


Humans show a natural tendency to discount bad news while incorporating good news into beliefs (the “good news-bad news effect”), an effect that may help explain seemingly irrational risk taking. Understanding how this bias develops with age is important because adolescents are prone to engage in risky behavior; thus, educating them about danger is crucial. We reveal a striking valence-dependent asymmetry in how belief updating develops with age. In the ages tested (9-26 y), younger age was associated with inaccurate updating of beliefs in response to undesirable information regarding vulnerability. In contrast, the ability to update beliefs accurately in response to desirable information remained relatively stable with age. This asymmetry was mediated by adequate computational use of positive but not negative estimation errors to alter beliefs. The results are important for understanding how belief formation develops and might help explain why adolescents do not respond adequately to warnings.

Concepts: Epistemology, Philosophical terminology, Religion, Human, Psychology, Core issues in ethics, Critical thinking, Risk


Scientists are trained to evaluate and interpret evidence without bias or subjectivity. Thus, growing evidence revealing a gender bias against women-or favoring men-within science, technology, engineering, and mathematics (STEM) settings is provocative and raises questions about the extent to which gender bias may contribute to women’s underrepresentation within STEM fields. To the extent that research illustrating gender bias in STEM is viewed as convincing, the culture of science can begin to address the bias. However, are men and women equally receptive to this type of experimental evidence? This question was tested with three randomized, double-blind experiments-two involving samples from the general public (n = 205 and 303, respectively) and one involving a sample of university STEM and non-STEM faculty (n = 205). In all experiments, participants read an actual journal abstract reporting gender bias in a STEM context (or an altered abstract reporting no gender bias in experiment 3) and evaluated the overall quality of the research. Results across experiments showed that men evaluate the gender-bias research less favorably than women, and, of concern, this gender difference was especially prominent among STEM faculty (experiment 2). These results suggest a relative reluctance among men, especially faculty men within STEM, to accept evidence of gender biases in STEM. This finding is problematic because broadening the participation of underrepresented people in STEM, including women, necessarily requires a widespread willingness (particularly by those in the majority) to acknowledge that bias exists before transformation is possible.

Concepts: Gender identity, Scientific method, Critical thinking, Gender role, Bias, Experiment, Science, Gender


Medicinal chemists' “intuition” is critical for success in modern drug discovery. Early in the discovery process, chemists select a subset of compounds for further research, often from many viable candidates. These decisions determine the success of a discovery campaign, and ultimately what kind of drugs are developed and marketed to the public. Surprisingly little is known about the cognitive aspects of chemists' decision-making when they prioritize compounds. We investigate 1) how and to what extent chemists simplify the problem of identifying promising compounds, 2) whether chemists agree with each other about the criteria used for such decisions, and 3) how accurately chemists report the criteria they use for these decisions. Chemists were surveyed and asked to select chemical fragments that they would be willing to develop into a lead compound from a set of ∼4,000 available fragments. Based on each chemist’s selections, computational classifiers were built to model each chemist’s selection strategy. Results suggest that chemists greatly simplified the problem, typically using only 1-2 of many possible parameters when making their selections. Although chemists tended to use the same parameters to select compounds, differing value preferences for these parameters led to an overall lack of consensus in compound selections. Moreover, what little agreement there was among the chemists was largely in what fragments were undesirable. Furthermore, chemists were often unaware of the parameters (such as compound size) which were statistically significant in their selections, and overestimated the number of parameters they employed. A critical evaluation of the problem space faced by medicinal chemists and cognitive models of categorization were especially useful in understanding the low consensus between chemists.

Concepts: Critical thinking, Selection, Chemistry, Drug design, Cognition, Drug discovery, Medicinal chemistry, Pharmacology


Cognitive science has long shown interest in expertise, in part because prediction and control of expert development would have immense practical value. Most studies in this area investigate expertise by comparing experts with novices. The reliance on contrastive samples in studies of human expertise only yields deep insight into development where differences are important throughout skill acquisition. This reliance may be pernicious where the predictive importance of variables is not constant across levels of expertise. Before the development of sophisticated machine learning tools for data mining larger samples, and indeed, before such samples were available, it was difficult to test the implicit assumption of static variable importance in expertise development. To investigate if this reliance may have imposed critical restrictions on the understanding of complex skill development, we adopted an alternative method, the online acquisition of telemetry data from a common daily activity for many: video gaming. Using measures of cognitive-motor, attentional, and perceptual processing extracted from game data from 3360 Real-Time Strategy players at 7 different levels of expertise, we identified 12 variables relevant to expertise. We show that the static variable importance assumption is false - the predictive importance of these variables shifted as the levels of expertise increased - and, at least in our dataset, that a contrastive approach would have been misleading. The finding that variable importance is not static across levels of expertise suggests that large, diverse datasets of sustained cognitive-motor performance are crucial for an understanding of expertise in real-world contexts. We also identify plausible cognitive markers of expertise.

Concepts: Artificial intelligence, Video game, Expert, Data, Machine learning, Critical thinking, Psychology, Learning


It is widely accepted that behavioural changes induced by Toxoplasma gondii are an adaptation of the parasite to enhance transmission to its cat definitive host. In our opinion, this explanation requires a rethink. We argue that the experimental evidence that observed behavioural changes will enhance transmission to cats is not convincing. We also argue that cats and sexual reproduction may not be essential for transmission and maintenance of this parasite. Thus, the selection pressure to infect a cat may not be sufficiently strong for the evolution of adaptive host manipulation to have occurred in order to enhance predation by cats.

Concepts: Immune system, Predation, Critical thinking, Natural selection, Cat, Toxoplasma gondii, Toxoplasmosis, Rat


Depression is common in primary care and clinicians are encouraged to screen their patients. Meta-analyses have evaluated the effectiveness of screening, but two author groups consistently reached completely opposite conclusions.

Concepts: Case study, Evaluation methods, Critical thinking, Scientific method


Proposals to improve the reproducibility of biomedical research have emphasized scientific rigor. Although the word “rigor” is widely used, there has been little specific discussion as to what it means and how it can be achieved. We suggest that scientific rigor combines elements of mathematics, logic, philosophy, and ethics. We propose a framework for rigor that includes redundant experimental design, sound statistical analysis, recognition of error, avoidance of logical fallacies, and intellectual honesty. These elements lead to five actionable recommendations for research education.

Concepts: Rigour, Statistics, Logic, Aristotle, Experiment, Critical thinking, Mathematics, Scientific method