Discover the most talked about and latest scientific content & concepts.

Concept: Crayfish


Carbonated hydroxyapatite is the mineral found in vertebrate bones and teeth, whereas invertebrates utilize calcium carbonate in their mineralized organs. In particular, stable amorphous calcium carbonate is found in many crustaceans. Here we report on an unusual, crystalline enamel-like apatite layer found in the mandibles of the arthropod Cherax quadricarinatus (freshwater crayfish). Despite their very different thermodynamic stabilities, amorphous calcium carbonate, amorphous calcium phosphate, calcite and fluorapatite coexist in well-defined functional layers in close proximity within the mandible. The softer amorphous minerals are found primarily in the bulk of the mandible whereas apatite, the harder and less soluble mineral, forms a wear-resistant, enamel-like coating of the molar tooth. Our findings suggest a unique case of convergent evolution, where similar functional challenges of mastication led to independent developments of structurally and mechanically similar, apatite-based layers in the teeth of genetically remote phyla: vertebrates and crustaceans.

Concepts: Arthropod, Calcium, Crustacean, Mineral, Calcium carbonate, Teeth, Crayfish, Aragonite


Biogenic amines, particularly serotonin, are recognised to play an important role in controlling the aggression of invertebrates, whereas the effect of neurohormones is still underexplored. The crustacean Hyperglycemic Hormone (cHH) is a multifunctional member of the eyestalk neuropeptide family. We expect that this neuropeptide influences aggression either directly, by controlling its expression, or indirectly, by mobilizing the energetic stores needed for the increased activity of an animal. Our study aims at testing such an influence and the possible reversion of hierarchies in the red swamp crayfish, Procambarus clarkii, as a model organism. Three types of pairs of similarly sized males were formed: (1) ‘control pairs’ (CP, n = 8): both individuals were injected with a phosphate saline solution (PBS); (2) ‘reinforced pairs’ (RP, n = 9): the alpha alone was injected with native cHH, and the beta with PBS; (3) ‘inverted pairs’ (IP, n = 9): the opposite of (2). We found that, independently of the crayfish’s prior social experience, cHH injections induced (i) the expression of dominance behaviour, (ii) higher glycemic levels, and (iii) lower time spent motionless. In CP and RP, fight intensity decreased with the establishment of dominance. On the contrary, in IP, betas became increasingly likely to initiate and escalate fights and, consequently, increased their dominance till a temporary reversal of the hierarchy. Our results demonstrate, for the first time, that, similarly to serotonin, cHH enhances individual aggression, up to reverse, although transitorily, the hierarchical rank. New research perspectives are thus opened in our intriguing effort of understanding the role of cHH in the modulation of agonistic behaviour in crustaceans.

Concepts: Arthropod, Hierarchy, Crustacean, Procambarus clarkii, Crayfish, Decapoda, Cambaridae, Procambarus


The white-clawed crayfish (Austropotamobius italicus), a cornerstone of Spain’s aquatic ecosystems, was once widely distributed throughout much of the country. Unfortunately, its populations have suffered very strong declines over the last 40 years due to the spread of introduced species (red swamp and signal crayfishes), diseases, habitat loss and other anthropogenic impacts. The present work examines the genetic variation in 23 Spanish and four Italian populations of white-clawed crayfish via the analysis of microsatellite loci. The data show genetic variation in the Spanish populations to be affected by drastic and successive bottlenecks. Notwithstanding, the diversity of these Spanish populations in terms of observed heterozygosity is similar to or even higher than that recorded for other European populations studied using these same markers. North-central Spanish populations are clearly differentiated from the country’s remaining populations; they should be considered distinct management units. Processes occurred in historical and recent times, such as genetic drift and translocations, contribute greatly to this genetic structure. These data provide useful information for conservation of this species, since the preservation of its population structure and genetic variability should be goals for management decisions.

Concepts: Genetics, Population, Population genetics, Crayfish, Microsatellite, Astacidae, Austropotamobius, Austropotamobius pallipes


In this paper we explored the heavy metal bioaccumulation (Cd, Cu, Pb and Zn) in Procambarus clarkii, a crayfish recently suggested as a potential bioindicator for metals pollution in freshwater systems. The present study is focused on crayfishes populations caught in a heavily polluted industrial and in a reference sites (Central Italy), though the results are generalized with a thorough analysis of literature metadata. In agreement with the literature, the hepatopancreas (Hep, detoxification tissues) of the red swamp crayfish showed a higher concentration of heavy metals in comparison to the abdominal muscle (AbM, not detoxification tissues) in the sites under scrutiny. Hep/AbM concentration ratio was dependent on the specific metal investigated and on its sediment contamination level. Specifically we found that Hep/AbM ratio decreases as follows: Cd (11.7)>Cu (5.5)>Pb (3.6)>Zn (1.0) and Pb (4.34)>Cd (3.66)>Zn (1.69)>Cu (0.87) for the industrial and reference sites, respectively. The analysis of our bioaccumulation data as well as of literature metadata allowed to elaborate a specific contamination index (Toxic Contamination Index, TCI), dependent only on the bioaccumulation data of hepatopancreas and abdominal muscle. In the industrial site, TCI expressed values much higher than the unit for Cd and Cu, confirming that these metals were the main contaminants; in contrast for lower levels of heavy metals, as those observed in the reference site for Cu, Zn and Pb, the index provided values below unit. TCI is proposed as a useful and easy tool to assess the toxicity level of contaminated sites by heavy metals in the environmental management.

Concepts: Toxicology, Pollution, Procambarus clarkii, Crayfish, Heavy metal music, Biomagnification, Heavy metal, Cambaridae


We generated RNA-seq data to assemble the transcriptome of the noble crayfish (Astacus astacus) from four combined tissues (abdominal muscle, hepatopancreas, ovaries, green glands). A total of 194 million read pairs with a length of 100 bp were generated. The transcriptome was assembled de novo using Trinity software, producing 158,649 non-redundant transcripts. Lowly expressed transcripts were filtered out leaving 45,415 transcripts of which 14,559 were found to contain open reading frames with predicted gene function. The Transrate software revealed that 91% of the total reads were realigned to the assembly. Furthermore, BUSCO analysis indicated that our assembly is 64% complete. A total of 13,770 transcripts were assigned at least one GO term. This first de novo transcriptome assembly is an important foundation for future genomic research on the noble crayfish and adds to the general knowledge and further characterization of transcriptomes of non-model organisms.

Concepts: Genetics, Gene expression, Crayfish, Astacidae, Signal crayfish, Crayfish plague, Astacus astacus, Astacus


Rates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world’s 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach.

Concepts: Biodiversity, Conservation biology, Evolution, Ecology, Crustacean, Endangered species, Crayfish, IUCN Red List


We used stable isotope analyses to characterise the feeding dynamics of a population of red swamp crayfish in Lake Naivasha, Kenya, after the crash of submerged macrophytes and associated macroinvertebrates, and during a natural draw-down of the lake water level. We expected a heavy reliance upon a diet of detrital matter to sustain the population as a consequence, and indeed, for the majority of the crayfish population caught from the lake, we saw a concomitant shift in isotopic values reflecting a dietary change. However, we also caught individual crayfish that had occupied the footprints of hippopotamus and effectively extended their range beyond the lake up to 40 m into the riparian zone. Isotopic analysis confirmed limited nocturnal observations that these individuals were consuming living terrestrial plants in the vicinity of the footprints. These are the first empirical data to demonstrate direct use of terrestrial resources by an aquatic crayfish species and further highlight the traits that make red swamp crayfish such opportunistic and successful invaders.

Concepts: Scientific method, Nutrition, Wetland, Groundwater, Riparian zone, Crayfish, Aquatic ecosystem, Isotope analysis


In the Mediterranean basin, the globally increasing temperatures are expected to be accompanied by longer heat waves. Commonly assumed to benefit cold-limited invasive alien species, these climatic changes may also change their feeding preferences, especially in the case of omnivorous ectotherms. We investigated heat wave effects on diet choice, growth and energy reserves in the invasive red swamp crayfish, Procambarus clarkii. In laboratory experiments, we fed juvenile and adult crayfish on animal, plant or mixed diets and exposed them to a short or a long heat wave. We then measured crayfish survival, growth, body reserves and Fulton’s condition index. Diet choices of the crayfish maintained on the mixed diet were estimated using stable isotopes (13C and 15N). The results suggest a decreased efficiency of carnivorous diets at higher temperatures, as juveniles fed on the animal diet were unable to maintain high growth rates in the long heat wave; and a decreased efficiency of herbivorous diets at lower temperatures, as juveniles in the cold accumulated less body reserves when fed on the plant diet. Heat wave treatments increased the assimilation of plant material, especially in juveniles, allowing them to sustain high growth rates in the long heat wave. Contrary to our expectations, crayfish performance decreased in the long heat wave, suggesting that Mediterranean summer heat waves may have negative effects on P. clarkii and that they are unlikely to boost its populations in this region. Although uncertain, it is possible that the greater assimilation of the plant diet resulted from changes in crayfish feeding preferences, raising the hypotheses that i) heat waves may change the predominant impacts of this keystone species and ii) that by altering species' trophic niches, climate change may alter the main impacts of invasive alien species.

Concepts: Animal, Mediterranean Sea, Climate change, Procambarus clarkii, Crayfish, Invasive species, Cambaridae, Procambarus


Freshwater biodiversity is globally threatened by various factors while severe weather events like long-term droughts may be substantially devastating. In order to remain in contact with the water or stay in a sufficiently humid environment at drying localities, the ability to withstand desiccation by dwelling in the hyporheic zone, particularly through vertical burrowing is crucial. We assessed the ability of three European native and five non-native crayfish as models to survive and construct vertical burrows in a humid sandy-clayey substrate under a simulated one-week drought. Three native species (Astacus astacus, A. leptodactylus, and Austropotamobius torrentium) suffered extensive mortalities. Survival of non-native species was substantially higher while all specimens of Cherax destructor and Procambarus clarkii survived. The native species and Pacifastacus leniusculus exhibited no ability to construct vertical burrows. Procambarus fallax f. virginalis and P. clarkii constructed bigger and deeper burrows than C. destructor and Orconectes limosus. In the context of predicted weather fluctuations, the ability to withstand desiccation through constructing vertical burrows into the hyporheic zone under drought conditions might play a significant role in the success of particular crayfish species, as well as a wide range of further hyporheic-dwelling aquatic organisms in general.

Concepts: Hydrology, Procambarus clarkii, Crayfish, Astacidae, Signal crayfish, Cambaridae, Crayfish plague, Astacus astacus


Gramastacus lacus sp. n., is described from coastal lowlands of the Central and Mid North Coast regions of New South Wales, Australia. Gramastacus lacus has a restricted distribution in ephemeral habitats, being dependent on regular natural flooding and drying cycles, and burrows for survival during temporary dry cycles. Documented are population distributions in lowland habitats (3-48 m, a.s.l.) from Wamberal Lagoon, north along the coastal strip to Wallis Lake. The species is small, reaching a maximum weight of 7 grams and 21.3 mm OCL, and distinguished by a large male genital papilla, large raised post orbital ridges, laterally compressed carapace and elongated chelae.

Concepts: Crustacean, New Zealand, Crayfish, New South Wales, Tasmania, Lobster, Parastacidae, Astacidea