Discover the most talked about and latest scientific content & concepts.

Concept: Cory's Shearwater


Fisheries provide an abundant and predictable food source for many pelagic seabirds through discards, but also pose a major threat to them through bycatch, threatening their populations worldwide. The reform of the European Common Fisheries Policy (CFP), which intends to ban discards through the landing obligation of all catches, may force seabirds to seek alternative food sources, such as baited hooks from longlines, increasing bycatch rates. To test this hypothesis we performed a combined analysis of seabird-fishery interactions using as a model Scopoli’s shearwaters Calonectris diomedea in the Mediterranean. Tracking data showed that the probability of shearwaters attending longliners increased exponentially with a decreasing density of trawlers. On-board observations and mortality events corroborated this result: the probability of birds attending longliners increased 4% per each trawler leaving the longliner proximity and bird mortality increased tenfold when trawlers were not operating. Therefore, the implementation of the landing obligation in EU waters will likely cause a substantial increase in bycatch rates in longliners, at least in the short-term, due to birds switching from trawlers to longliners. Thus the implementation of the landing obligation must be carefully monitored and counterbalanced with an urgent implementation of bycatch mitigation measures in the longline fleet.

Concepts: Cory's Shearwater, Longline fishing, Bird, Albatross, Seabird, Procellariidae, Shearwater, Procellariiformes


Light pollution and its consequences on ecosystems are increasing worldwide. Knowledge on the threshold levels of light pollution at which significant ecological impacts emerge and the size of dark refuges to maintain natural nocturnal processes is crucial to mitigate its negative consequences. Seabird fledglings are attracted by artificial lights when they leave their nest at night, causing high mortality. We used GPS data-loggers to track the flights of Cory’s shearwater Calonectris diomedea fledglings from nest-burrows to ground, and to evaluate the light pollution levels of overflown areas on Tenerife, Canary Islands, using nocturnal, high-resolution satellite imagery. Birds were grounded at locations closer than 16 km from colonies in their maiden flights, and 50% were rescued within a 3 km radius from the nest-site. Most birds left the nests in the first three hours after sunset. Rescue locations showed radiance values greater than colonies, and flight distance was positively related to light pollution levels. Breeding habitat alteration by light pollution was more severe for inland colonies. We provide scientific-based information to manage dark refuges facilitating that fledglings from inland colonies reach the sea successfully. We also offer methodological approaches useful for other critically threatened petrel species grounded by light pollution.

Concepts: Petrel, Bird, Cory's Shearwater, Calonectris, Procellariidae, Seabird, Shearwater, Procellariiformes


Seabirds are colonial vertebrates that despite their great potential for long-range dispersal and colonization are reluctant to establish in novel locations, often recruiting close to their natal colony. The foundation of colonies is therefore a rare event in most seabird species and little is known about the colonization process in this group. The Cory’s shearwater (Calonectris diomedea) is a pelagic seabird that has recently established three new colonies in Galicia (NE Atlantic) thus expanding its distribution range 500 km northwards. This study aimed to describe the establishment and early progress of the new Galician populations and to determine the genetic and morphometric characteristics of the individuals participating in these foundation events. Using 10 microsatellite loci, we tested the predictions supported by different seabird colonization models. Possibly three groups of non-breeders, adding up to around 200 birds, started visiting the Galician colonies in the mid 2000’s and some of them eventually laid eggs and reproduced, thus establishing new breeding colonies. The Galician populations showed a high genetic diversity and a frequency of private alleles similar to or even higher than some of the large historical populations. Most individuals were assigned to several Atlantic populations and a few (if any) to Mediterranean colonies. Our study suggests that a large and admixed population is settling in Galicia, in agreement with predictions from island metapopulation models of colonization. Multiple source colonies imply that some birds colonizing Galicia were dispersing from very distant colonies (> 1500 km). Long-distance colonizations undertaken by relatively large and admixed groups of colonizers can help to explain the low levels of genetic structure over vast areas that are characteristic of most oceanic seabird species.

Concepts: Bird, Calonectris, Cory's Shearwater, Seabird, Procellariidae, Procellariiformes, Shearwater, Colonialism


Marine megafauna, including seabirds, are critically affected by fisheries bycatch. However, bycatch risk may differ on temporal and spatial scales due to the uneven distribution and effort of fleets operating different fishing gear, and to focal species distribution and foraging behaviour. Scopoli’s shearwater Calonectris diomedea is a long-lived seabird that experiences high bycatch rates in longline fisheries and strong population-level impacts due to this type of anthropogenic mortality. Analyzing a long-term data set on individual monitoring, we compared adult survival (by means of multi-event capture-recapture models) among three close predator-free Mediterranean colonies of the species. Unexpectedly for a long-lived organism, adult survival varied among colonies. We explored potential causes of this differential survival, by: (1) measuring egg volume as a proxy of food availability and parental condition; (2) building a specific longline bycatch risk map for the species; and (3) assessing the distribution patterns of breeding birds from the three study colonies via GPS tracking. Egg volume was very similar between colonies over time, suggesting that environmental variability related to habitat foraging suitability was not the main cause of differential survival. On the other hand, differences in foraging movements among individuals from the three colonies expose them to differential mortality risk, which likely influenced the observed differences in adult survival. The overlap of information obtained by the generation of specific bycatch risk maps, the quantification of population demographic parameters and the foraging spatial analysis should inform managers about differential sensitivity to the anthropogenic impact at mesoscale level and guide decisions depending on the spatial configuration of local populations. The approach would apply and should be considered in any species where foraging distribution is colony-specific and mortality risk varies spatially. This article is protected by copyright. All rights reserved.

Concepts: Longline fishing, Calonectris, Albatross, Cory's Shearwater, Seabird, Shearwater, Procellariiformes, Procellariidae


Pelagic seabirds wander the open oceans then return accurately to their habitual nest-sites. We investigated the effects of sensory manipulation on oceanic navigation in Scopoli’s shearwaters (Calonectris diomedea) breeding at Pianosa island (Italy), by displacing them 400 km from their colony and tracking them. A recent experiment on Atlantic shearwaters (Cory’s shearwater, Calonectris borealis) breeding in the Azores indicated a crucial role of olfaction over the open ocean, but left open the question of whether birds might navigate by topographical landmark cues when available. Our experiment was conducted in the Mediterranean sea, where the availability of topographical cues may provide an alternative navigational mechanism for homing. Magnetically disturbed shearwaters and control birds oriented homeward even when the coast was not visible and rapidly homed. Anosmic shearwaters oriented in a direction significantly different from the home direction when in open sea. After having approached a coastline their flight path changed from convoluted to homeward oriented, so that most of them eventually reached home. Beside confirming that magnetic cues appear unimportant for oceanic navigation by seabirds, our results support the crucial role of olfactory cues for birds' navigation and reveal that anosmic shearwaters are able to home eventually by following coastal features.

Concepts: Bird, Cory's Shearwater, Atlantic Ocean, Procellariidae, Seabird, Shearwater, Procellariiformes, Ocean


The apparent scarcity or absence of blood parasites in some avian groups, such as seabirds, has been related to intrinsic and extrinsic factors including host immunological capacity, host-parasite assemblage, and ecological parameters, but also to reduced sensitivity of some methods to detect low parasite prevalence/intensities of infection. Here, we examined the haemosporidian parasite prevalence in a breeding population of Cory’s shearwater Calonectris diomedea borealis, a long-distance migrant seabird, nesting in the Macaronesian region, in the Eastern Atlantic. Previous studies on Calonectris diomedea complex were based on small sample sizes providing weak evidence for a lack of infections by haemoparasites. Here, we investigated the presence of both parasite infections in C. d. borealis and larvae of potential mosquito vectors on the area. By employing a PCR-based assay, we extensively examined the prevalence of blood parasites belonging to the genera Plasmodium, Haemoproteus, and Leucocytozoon in 286 individuals from different life stages (i.e., chicks, immatures, sabbatical, and breeding adults), facing their specific energetic trade-offs (immunological functions vs. life history activities). We sampled immatures and adult shearwaters, of different sexes, ages, and migratory origins, from two sub-colonies. None of the sampled individuals were infected by these parasites, supporting the hypothesis that there was no in situ or ex situ transmission of vector-borne parasites in marine habitats irrespective of host’s life stage and in spite of the presence of the potential Plasmodium vector Culiseta longiareolata breeding in the area. These results suggest that the lack of transmission of haemosporidian parasites on Selvagem Grande may be related to the lack of suitable dipteran vectors at the study sites, which may result from the geographic isolation of this area.

Concepts: Madeira, Immune system, Calonectris, Cory's Shearwater, Procellariiformes, Seabird, Procellariidae, Shearwater


Little is known about the accumulation of persistent organic pollutants (POPs) and its consequences for seabirds in the Mediterranean basin. We characterised the plasma contaminant profile (polychlorinated biphenyls ΣPCBs; organochlorine pesticides ΣOCPs; polybrominated diphenyl ethers ΣPBDEs) of a population of the seabird Scopoli’s shearwater (Calonectris diomedea) that breeds in the southern Mediterranean (Linosa Island) and investigated (i) whether sex, stable isotope ratios (related to diet), reproductive phase (early incubation vs. late breeding season) and body mass explained variation in contaminant burden and (ii) whether they predict health-related variables. The predominant category of POPs was ΣPCBs contributing between 53.0 and 92.4% of the total POPs in each shearwater. The percentage contribution of ΣOCPs to total POPs ranged between 7.6 and 47.0%, while that of ΣPBDEs ranged between <1% and 22.1%. Near the end of the breeding season, concentrations of ΣPCBs, ΣOCPs and ΣPOPs were significantly higher than at the beginning of the incubation period. ΣPBDEs were higher in males than females near the end of the breeding season, while they were higher in females than males at the beginning of the egg incubation period. Carbon- and nitrogen isotope ratios and individual body mass were not significantly associated with any contaminant class. Mates differed in the concentration of POPs, but they had similar stable isotope values. There was little evidence for a connection between contaminants and blood-based markers of oxidative balance. None of the contaminants predicted the probability of a bird being resighted as a breeder the following year. Thus, although POPs were present at high concentrations in some individuals, our study suggests little concern regarding POP exposure for this shearwater population.

Concepts: Calonectris, Reproduction, Cory's Shearwater, Procellariiformes, Procellariidae, Seabird, Shearwater, Polychlorinated biphenyl


Vocal recognition is an important process allowing partners' reunion in most seabirds. Although the acoustic basis of this recognition has been explored in several species, only a few studies have experimentally tested the acoustic coding-decoding strategy used for mate identification. Here, we investigated mate recognition in the Scopoli’s shearwater (Calonectris diomedea) by conducting playbacks of calls with modified acoustic features. We showed that females and males in a seabird species with a moderate vocal dimorphism are likely to share the same coding-decoding rule for vocal mate identification. Specifically, a disruption of call temporal structure prevented mate recognition in both sexes, in line with the parameters previously identified as supporting an individual signature. Modifications of spectral cues and envelope structure also impaired recognition, but at a lesser extent: almost half of the tested males and females were still able to recognise their partner. It is likely that this equal ability of female and male Scopoli’s shearwaters to vocally recognise their partner could be found in other seabirds.

Concepts: Female, Male, Cory's Shearwater, Seabird, Sex, Procellariiformes, Shearwater, Procellariidae


To overcome unpredictable stressful transitory events, animals trigger an allostatic response involving the hypothalamic-pituitary-adrenal cortex. This hormonal response, which involves the release of glucocorticoids which in turn mediate between the main physiological mechanisms that regulate the energetic demands and resource allocation trade-off with behavioural responses to environmental perturbations and may ultimately lead to variation in fitness. We have used the Cory’s shearwater Calonectris borealis, a sexually dimorphic pelagic seabird with a partial migratory strategy, as a model bird species to analyse a number of traits related to the stress response. We investigated whether the activation of a stressful response, mediated by corticosterone, during the wintering period (1) correlated with the previous breeding success, (2) was affected by the migratory behaviour of male birds and (3) had consequences in the fitness of the birds. Corticosterone levels in feathers grown overwinter were analysed in 61 adult birds during three consecutive migratory periods (2009-2012) and in 14 immature birds in the wintering period 2010-2011. Moreover, the levels of corticosterone were analysed in experimental birds which were freed from their reproductive duties and compared with control birds which raised fledglings to the end of the breeding period. The results show that the levels of corticosterone were sex dependent, differed between years and were affected by the migratory strategy performed by the birds. The activation of the stressful response over the wintering period generated residual carry-over effects that positively affected the reproductive output in the subsequent breeding stage, a phenomenon previously undescribed in a long-lived pelagic seabird. Our study provides evidence that the analysis of corticosterone from feathers is a useful tool to evaluate carry-over effects in birds far away from breeding sites, opening new possibilities for future studies in this field.

Concepts: Male, Sexual dimorphism, Cory's Shearwater, Procellariiformes, Seabird, Procellariidae, Shearwater, Bird


Breeding seabirds are central-place foragers and therefore exploit food resources most intensively nearer their colonies. When nesting aggregations are close to one another density-dependent competition is likely to be high, potentially promoting foraging segregation (i.e. neighbouring colonies may segregate to search for food in different areas). However, little is known about spatial segregation in foraging behaviour between closely adjacent colonies, particularly in species that are wide-ranging foragers. Here, we tested for foraging segregation between two sub-colonies of a wide-ranging seabird, Cory’s shearwater Calonectris borealis, separated by only 2 km, on a small Island in the North Atlantic. During the 2010 chick-rearing period, 43 breeding adults of both sexes were simultaneously sampled at both sub-colonies. A GPS logger was deployed on each individual and removed after several foraging trips at sea. Blood samples (plasma and red blood cells) were collected from each tracked individual for stable isotope analysis. Results indicated partial spatial segregation between the two sub-colonies during local foraging trips (i.e. those of ≤1 day duration and 216 km from the colony) accounting for 84.2 % of all trips recorded. The location of the breeding sub-colony influenced the direction of travel of birds during local trips resulting in sub-colony-specific foraging areas. Although the oceanographic conditions associated with the foraging range of the two sub-colonies differed, no differences were found in the habitat exploited and in their estimated diets. This suggests that birds concentrated their feeding activity in patches of similar habitat and prey during the chick-rearing period.

Concepts: Blood, Cory's Shearwater, Bird, Procellariiformes, Red blood cell, Seabird, Procellariidae, Shearwater