Discover the most talked about and latest scientific content & concepts.

Concept: Corrective lens


To compare the performance of two novel multipurpose disinfecting solutions (MPDS) in preventing silicone hydrogel contact lens dehydration, provide higher scores of subjective comfort and stable optical quality during a month of lens wear in neophyte volunteers.

Concepts: Cornea, Myopia, Lens, Contact lens, Contact lenses, Corrective lens, Intraocular lens, Oxygen permeability


Recent advances in wearable electronics combined with wireless communications are essential to the realization of medical applications through health monitoring technologies. For example, a smart contact lens, which is capable of monitoring the physiological information of the eye and tear fluid, could provide real-time, noninvasive medical diagnostics. However, previous reports concerning the smart contact lens have indicated that opaque and brittle components have been used to enable the operation of the electronic device, and this could block the user’s vision and potentially damage the eye. In addition, the use of expensive and bulky equipment to measure signals from the contact lens sensors could interfere with the user’s external activities. Thus, we report an unconventional approach for the fabrication of a soft, smart contact lens in which glucose sensors, wireless power transfer circuits, and display pixels to visualize sensing signals in real time are fully integrated using transparent and stretchable nanostructures. The integration of this display into the smart lens eliminates the need for additional, bulky measurement equipment. This soft, smart contact lens can be transparent, providing a clear view by matching the refractive indices of its locally patterned areas. The resulting soft, smart contact lens provides real-time, wireless operation, and there are in vivo tests to monitor the glucose concentration in tears (suitable for determining the fasting glucose level in the tears of diabetic patients) and, simultaneously, to provide sensing results through the contact lens display.

Concepts: Eye, Cornea, Myopia, Lens, Contact lens, Corrective lens, Tears, Wireless energy transfer


Contact lens-related eye infections, which can lead to serious outcomes, including blindness, are associated with several risk factors, including sleeping in lenses, exposing lenses to water, not adhering to replacement schedules, and reusing disinfecting solution (1). In some studies, adolescent and young adult contact lens wearers have been reported to be more likely than older adult contact lens wearers to develop eye infections (2,3) and more likely to have poor contact lens hygiene practices (2). In 2015, CDC reported the number and demographics of adult contact lens wearers in the United States to define the population at risk for contact lens-related eye infections (4); however, this estimate did not include adolescents. To better understand this group of younger contact lens wearers and guide prevention efforts, a population-based survey was used to assess contact lens wear, care behaviors, risk factors, and demographics among persons aged 12-17 years (referred to as adolescents in this report), young adults aged 18-24 years, and older adults aged ≥25 years in the United States. In 2016, an estimated 3.6 million adolescents (14.5%) wore contact lenses. Of the adolescents who wore contact lenses, 85% reported at least one behavior that put them at risk for a contact lens-related eye infection, compared with 81% of young adults, and 88% of older adults. These findings can inform the creation of age-specific targeted prevention messages aimed at contact lens wearers and establish a baseline for evaluating trends in contact lens wear, care habits, and contact lens-related risk behaviors.

Concepts: United States, Cornea, Adolescence, Myopia, Lens, Contact lens, Contact lenses, Corrective lens


Prevalence of myopia is increasing worldwide. Outdoor activity is one of the most important environmental factors for myopia control. Here we show that violet light (VL, 360-400nm wavelength) suppresses myopia progression. First, we confirmed that VL suppressed the axial length (AL) elongation in the chick myopia model. Expression microarray analyses revealed that myopia suppressive gene EGR1 was upregulated by VL exposure. VL exposure induced significantly higher upregulation of EGR1 in chick chorioretinal tissues than blue light under the same conditions. Next, we conducted clinical research retrospectively to compare the AL elongation among myopic children who wore eyeglasses (VL blocked) and two types of contact lenses (partially VL blocked and VL transmitting). The data showed the VL transmitting contact lenses suppressed myopia progression most. These results suggest that VL is one of the important outdoor environmental factors for myopia control. Since VL is apt to be excluded from our modern society due to the excessive UV protection, VL exposure can be a preventive strategy against myopia progression.

Concepts: Ultraviolet, Light, Myopia, Lens, Orthokeratology, Contact lens, Corrective lens, Glasses


PURPOSE: The aim was to determine the extent of daily disposable contact lens prescribing worldwide and to characterise the associated demographics and fitting patterns. METHODS: Up to 1,000 survey forms were sent to contact lens fitters in up to 40 countries between January and March every year for five consecutive years (2007 to 2011). Practitioners were asked to record data relating to the first 10 contact lens fits or refits performed after receiving the survey form. Survey data collected since 1996 were also analysed for seven nations to assess daily disposable lens fitting trends since that time. RESULTS: Data were collected in relation to 97,289 soft lens fits, of which 23,445 (24.1 per cent) were with daily disposable lenses and 73,170 (75.9 per cent) were with reusable lenses. Daily disposable lens prescribing ranged from 0.6 per cent of all soft lenses in Nepal to 66.2 per cent in Qatar. Compared with reusable lens fittings, daily disposable lens fittings can be characterised as follows: older age (30.0 ± 12.5 versus 29.3 ± 12.3 years for reusable lenses); males are over-represented; a greater proportion of new fits versus refits; 85.9 per cent hydrogel; lower proportion of toric and presbyopia designs and a higher proportion of part-time wear. There has been a continuous increase in daily disposable lens prescribing between 1996 and 2011. The proportion of daily disposable lens fits (as a function of all soft lens fits) is positively related to the gross domestic product at purchasing power parity per capita (r(2) = 0.55, F = 46.8, p < 0.0001). CONCLUSIONS: The greater convenience and other benefits of daily disposable lenses have resulted in this modality capturing significant market share. The contact lens field appears to be heading toward a true single-use-only, disposable lens market.

Concepts: Cornea, Myopia, Lens, Contact lens, Corrective lens, Intraocular lens, Purchasing power parity, National accounts


The aim was to evaluate the visual performance provided with a contact lens-based pinhole design against a simultaneous vision multifocal contact lens.

Concepts: Cornea, Myopia, Lens, Contact lens, Corrective lens, Book of Optics, Intraocular lens, Glasses



ABSTRACT:: Contact lens-associated corneal infiltrative events (CIEs) are presumed sterile events that have complicated contact lens wear for more than 30 years. There is consistent evidence that silicone hydrogel soft contact lenses increase CIE risk by twofold compared with low Dk hydrogel materials. The incidence of CIEs during silicone hydrogel extended wear ranges from 2% to 6% for symptomatic events and from 6% to 25% when asymptomatic events are included. For daily wear, with silicone hydrogels, the incidence of CIEs ranges from 2% to 3% for symptomatic events and from 7% to 20% when asymptomatic events are included. Despite the increased rate of CIEs with silicone hydrogels, the benefits of these lenses largely outweigh this risk for many patients. Most risk factors for CIEs observed with silicone hydrogels are consistent with CIE risk factors reported earlier with hydrogel lenses, such as bacterial bioburden on lens surfaces, and young age among others. Limiting the transfer of bacterial bioburden from the skin to lenses, lens cases and eventually to the eye is an obvious step forward for the prevention of CIEs across all lens types.

Concepts: Epidemiology, Eye, Cornea, Lens, Contact lens, Contact lenses, Keratitis, Corrective lens


Purpose: To alter the composition and structure of silicone hydrogel contact lenses to achieve controlled release of dexamethasone and evaluate the lens optical and mechanical properties compared to commercial lenses. There is a tremendous need for controlled release of drugs from ocular biomaterials as the majority of ophthalmic drugs are delivered via topical eye drops, which have low bioavailability and patient compliance. Methods: Poly(PDMS-co-TRIS-co-DMA) contact lenses were synthesized with varying PDMS/TRIS:DMA ratios (0.25:1, 0.67:1, 1.5:1) as well as with additional crosslinking monomers. Lenses were characterized via in vitro release studies in a microfluidic device at ocular flowrates and in large well-mixed volumes, optical quality studies over visible wavelengths, mechanical analysis, and determination of polymer volume fraction in the swollen state. Results: Extended and controlled release of therapeutically relevant concentrations of dexamethasone was achieved for multiple day, continuous wear up to 60 days at in vitro ocular flowrates. Release was delayed due to a combination of increased hydrophobic to hydrophilic composition and the inclusion of additional structural constraints, both of which decreased the polymer volume fraction in the swollen state. However, decreased mass release rates were at the expense of increased modulus and decreased lens flexibility. All lenses had high optical clarity (∼90% transmittance) and contained highly oxygen permeable siloxane composition similar to those found in commercial silicone hydrogel lenses, but they had poor flexibility for use as soft contact lenses. Conclusions: Based on our results, the lenses described herein likely have too high of a modulus for use as extended-wear, soft contact lenses with drug release. Therefore, other controlled release methods would be better suited for maintaining adequate mechanical properties and achieving controlled and extended release for the duration of wear in soft, silicone hydrogel contact lens biomaterials. However, these biomaterials may find clinical use as more rigid gas permeable contact lenses or inserts.

Concepts: Polymer, Cornea, Lens, Contact lens, Contact lenses, Corrective lens, Visible spectrum, Rigid gas permeable


PURPOSE: To investigate the relationship between parental refractive error and the nearwork-induced transient myopia (NITM) characteristics of their children. METHODS: Three hundred sixty children (173 boys and 187 girls) aged 6 to 17 years were tested. Initial NITM and its decay time (DT) were assessed objectively (WAM-5500, Grand-Seiko) immediately after binocularly viewing and performing a sustained near task (5 diopters [D]) for 5 minutes, incorporating a cognitive demand with full distance refractive correction in place. The NITM was classified into three categories: low (<0.15 D), moderate (0.15 to 0.30 D), or high (≥0.30 D), whereas its decay was classified into two categories, namely, complete or incomplete. In addition, the children were divided into three groups based on the number of myopic parents (none, one, or two) and into four groups based on the level of parental myopia (no, low, moderate, or high). RESULTS: Neither paternal nor maternal refractive error was associated with either their children's initial NITM magnitude or its DT in the myopic, emmetropic, or hyperopic groups or the combined group. No significant differences (p > 0.05) in the NITM magnitude, DT, or decay time constant were found as related to the number of myopic parents or level of parental myopia. Multiple odds ratio for incomplete decay of NITM did not change significantly (p > 0.05) with either an increase in number of myopic parents or level of parental myopia. CONCLUSIONS: There was no association between parental refractive error and their children’s NITM characteristics. This suggests a primary environmental basis for the NITM characteristics in the children.

Concepts: Myopia, Lens, Corrective lens, Refractive error, Hyperopia