SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Copper

295

Ancient human mobility at the individual level is conventionally studied by the diverse application of suitable techniques (e.g. aDNA, radiogenic strontium isotopes, as well as oxygen and lead isotopes) to either hard and/or soft tissues. However, the limited preservation of coexisting hard and soft human tissues hampers the possibilities of investigating high-resolution diachronic mobility periods in the life of a single individual. Here, we present the results of a multidisciplinary study of an exceptionally well preserved circa 3.400-year old Danish Bronze Age female find, known as the Egtved Girl. We applied biomolecular, biochemical and geochemical analyses to reconstruct her mobility and diet. We demonstrate that she originated from a place outside present day Denmark (the island of Bornholm excluded), and that she travelled back and forth over large distances during the final months of her life, while consuming a terrestrial diet with intervals of reduced protein intake. We also provide evidence that all her garments were made of non-locally produced wool. Our study advocates the huge potential of combining biomolecular and biogeochemical provenance tracer analyses to hard and soft tissues of a single ancient individual for the reconstruction of high-resolution human mobility.

Concepts: Tissues, Copper, Tin, Denmark, Danish language, Geochemistry, Mesopotamia, Isotope geochemistry

258

Pigmentation is a polygenic trait encompassing some of the most visible phenotypic variation observed in humans. Here we present direct estimates of selection acting on functional alleles in three key genes known to be involved in human pigmentation pathways-HERC2, SLC45A2, and TYR-using allele frequency estimates from Eneolithic, Bronze Age, and modern Eastern European samples and forward simulations. Neutrality was overwhelmingly rejected for all alleles studied, with point estimates of selection ranging from around 2-10% per generation. Our results provide direct evidence that strong selection favoring lighter skin, hair, and eye pigmentation has been operating in European populations over the last 5,000 y.

Concepts: Gene, Genetics, Natural selection, Genotype, Evolution, Copper, Human skin color, Eye color

194

Noroviruses (family Caliciviridae) are the primary cause of viral gastroenteritis worldwide. The virus is highly infectious and touching contaminated surfaces can contribute to infection spread. Although the virus was identified over 40 years ago the lack of methods to assess infectivity has hampered the study of the human pathogen. Recently the murine virus, MNV-1, has successfully been used as a close surrogate. Copper alloys have previously been shown to be effective antimicrobial surfaces against a range of bacteria and fungi. We now report rapid inactivation of murine norovirus on alloys, containing over 60% copper, at room temperature but no reduction of infectivity on stainless steel dry surfaces in simulated wet fomite and dry touch contamination. The rate of inactivation was initially very rapid and proportional to copper content of alloy tested. Viral inactivation was not as rapid on brass as previously observed for bacteria but copper-nickel alloy was very effective. The use of chelators and quenchers of reactive oxygen species (ROS) determined that Cu(II) and especially Cu(I) ions are still the primary effectors of toxicity but quenching superoxide and hydroxyl radicals did not confer protection. This suggests Fenton generation of ROS is not important for the inactivation mechanism. One of the targets of copper toxicity was the viral genome and a reduced copy number of the gene for a viral encoded protein, VPg (viral-protein-genome-linked), which is essential for infectivity, was observed following contact with copper and brass dry surfaces. The use of antimicrobial surfaces containing copper in high risk closed environments such as cruise ships and care facilities could help to reduce the spread of this highly infectious and costly pathogen.

Concepts: Virus, Zinc, Copper, Bronze, Steel, Gastroenteritis, Norovirus, Brass

147

Metals deposited into ecosystems are non-degradable and become one of the major toxic agents which accumulate in habitats. Thus, their concentration requires precise monitoring. To evaluate pollution around a chlor-alkali plant, a glass smelter, two power plants and a ceramic and porcelain factory, we selected terrestrial mosses with different life forms: the orthotropic and endohydric Polytrichum commune and plagiotropic and ectohydric Pleurozium schreberi. Metal concentrations were determined in both species growing together at sites situated at various distances approximately 0.75, 1.5, 3 and 6 km from polluters. MARS analysis evaluated different tendencies of both species for Cd, Co and Pb accumulation depending on the distance from the emitter. In P. schreberi, the concentration of these metals diminished relatively rapidly with an increasing distance from the emitter up to 3000 m and then stabilised. For P. commune, a steady decrease could be observed with increasing the distance up to 6000 m. PCCA ordination explained that both species from the vicinity of the chlor-alkali plant were correlated with the highest Co, Cr, Cu, Fe and Pb as well as Mn and Ni concentrations in their tissues. The mosses from sites closest to both power plants were correlated with the highest Cd and Zn concentrations. P. commune contained significantly higher Cd, Cr, Ni, Pb and Zn concentrations compared to P. schreberi. This may be caused by the lamellae found in the leaves of P. commune which increase the surface area of the possible aerial absorption of contaminants. Soil may also be an additional source of metals, and it affects the uptake in endohydric P. commune more than in ectohydric P. schreberi. However, the precise explanation of these relations needs further investigation.

Concepts: Iron, Plant, Metal, Copper, Pollution, Moss, Mosses, Polytrichum commune

143

Processing and manipulation of highly conductive pristine graphene in large quantities are still major challenges in the practical application of graphene for electric device. In the present study, we report the liquid-phase exfoliation of graphite in toluene using well-defined poly(3-hexylthiophene) (P3HT) to produce a P3HT/graphene composite. We synthesize and use regioregular P3HT with controlled molecular weights as conductive dispersants for graphene. Simple ultrasonication of graphite flakes with the P3HT successfully produces single-layer and few-layer graphene sheets dispersed in toluene. The produced P3HT/graphene composite can be used as conductive graphene ink, indicating that the P3HT/graphene composite has high electrical conductivity owing to the high conductivity of P3HT and graphene. The P3HT/graphene composite also works as an oxidation-resistant and conductive film for a copper substrate, which is due to the high gas-barrier property of graphene.

Concepts: Electricity, Electrical conductor, Aluminium, Copper, Graphite, Graphene, Electrical conductivity, Fullerene

81

The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates.

Concepts: Electricity, Heat, Aluminium, Metal, Copper, Silver, Printing, Inkjet printer

61

For the first time it is shown that carbon black inks on ancient Egyptian papyri from different time periods and geographical regions contain copper. The inks have been investigated using synchrotron-based micro X-ray fluorescence (XRF) and micro X-ray absorption near-edge structure spectroscopy (XANES) at the European Synchrotron Radiation Facility (ESRF). The composition of the copper-containing carbon inks showed no significant differences that could be related to time periods or the geographical locations. This renders it probable that the same technology for ink production was used throughout Egypt for a period spanning at least 300 years. It is argued that the black pigment material (soot) for these inks was obtained as by-products of technical metallurgy. The copper (Cu) can be correlated with the following three main components: cuprite (Cu2O), azurite (Cu3[CO3]2[OH]2) and malachite (Cu2CO3[OH]2).

Concepts: X-ray, Light, Carbon, Copper, Pigment, Ancient Egypt, Carbon black, Papyrus

60

This study identifies factors affecting the fate of buried objects in soil and develops a method for assessing where preservation of different materials and stratigraphic evidence is more or less likely in the landscape. The results inform the extent of the cultural service that soil supports by preserving artefacts from and information about past societies. They are also relevant to predicting the state of existing and planned buried infrastructure and the persistence of materials spread on land. Soils are variable and preserve different materials and stratigraphic evidence differently. This study identifies the material and soil properties that affect preservation and relates these to soil types; it assesses their preservation capacities for bones, teeth and shells, organic materials, metals (Au, Ag, Cu, Fe, Pb and bronze), ceramics, glass and stratigraphic evidence. Preservation of Au, Pb and ceramics, glass and phytoliths is good in most soils but degradation rates of other materials (e.g. Fe and organic materials) is strongly influenced by soil type. A method is proposed for using data on the distribution of soil types to map the variable preservation capacities of soil for different materials. This is applied at a continental scale across the EU for bones, teeth and shells, organic materials, metals (Cu, bronze and Fe) and stratigraphic evidence. The maps produced demonstrate how soil provides an extensive but variable preservation of buried objects.

Concepts: Soil, Zinc, Copper, Humus, Organic matter, Soil classification

55

We report the first occurrence of a natural quasicrystal with decagonal symmetry. The quasicrystal, with composition Al71Ni24Fe5, was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal to be identified, was found in the same meteorite. The new quasicrystal was found associated with steinhardtite (Al38Ni32Fe30), Fe-poor steinhardtite (Al50Ni40Fe10), Al-bearing trevorite (NiFe2O4) and Al-bearing taenite (FeNi). Laboratory studies of decagonal Al71Ni24Fe5 have shown that it is stable over a narrow range of temperatures, 1120 K to 1200 K at standard pressure, providing support for our earlier conclusion that the Khatyrka meteorite reached heterogeneous high temperatures [1100 < T(K) ≤ 1500] and then rapidly cooled after being heated during an impact-induced shock that occurred in outer space 4.5 Gya. The occurrences of metallic Al alloyed with Cu, Ni, and Fe raises new questions regarding conditions that can be achieved in the early solar nebula.

Concepts: Iron, Chondrite, Carbonaceous chondrite, Copper, Nickel, Meteorite, Iron meteorite, Taenite

49

Microparticles containing substantial amounts of radiocesium collected from the ground in Fukushima were investigated mainly by transmission electron microscopy (TEM) and X-ray microanalysis with scanning TEM (STEM). Particles of around 2 μm in diameter are basically silicate glass containing Fe and Zn as transition metals, Cs, Rb and K as alkali ions, and Sn as substantial elements. These elements are homogeneously distributed in the glass except Cs which has a concentration gradient, increasing from center to surface. Nano-sized crystallites such as copper- zinc- and molybdenum sulfide, and silver telluride were found inside the microparticles, which probably resulted from the segregation of the silicate and sulfide (telluride) during molten-stage. An alkali-depleted layer of ca. 0.2 μm thick exists at the outer side of the particle collected from cedar leaves 8 months after the nuclear accident, suggesting gradual leaching of radiocesium from the microparticles in the natural environment.

Concepts: Electron, Iron, Chernobyl disaster, Uranium, Zinc, Copper, Silver, Transition metal