Discover the most talked about and latest scientific content & concepts.

Concept: Convergence zone


There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

Concepts: Convergence zone, The Missing, Convergence, Sink, Open problem, Marine debris, Mathematics, Ocean


The presence of a low- to mid-latitude interhemispheric hydrologic seesaw is apparent over orbital and glacial-interglacial timescales, but its existence over the most recent past remains unclear. Here we investigate, based on climate proxy reconstructions from both hemispheres, the inter-hemispherical phasing of the Intertropical Convergence Zone (ITCZ) and the low- to mid-latitude teleconnections in the Northern Hemisphere over the past 2000 years. A clear feature is a persistent southward shift of the ITCZ during the Little Ice Age until the beginning of the 19th Century. Strong covariation between our new composite ITCZ-stack and North Atlantic Oscillation (NAO) records reveals a tight coupling between these two synoptic weather and climate phenomena over decadal-to-centennial timescales. This relationship becomes most apparent when comparing two precisely dated, high-resolution paleorainfall records from Belize and Scotland, indicating that the low- to mid-latitude teleconnection was also active over annual-decadal timescales. It is likely a combination of external forcing, i.e., solar and volcanic, and internal feedbacks, that drives the synchronous ITCZ and NAO shifts via energy flux perturbations in the tropics.

Concepts: Earth, Weather, Monsoon, Convergence zone, Intertropical Convergence Zone, Tropic of Cancer, Tropical cyclone, Equator


Although it is well established that transpiration contributes much of the water for rainfall over Amazonia, it remains unclear whether transpiration helps to drive or merely responds to the seasonal cycle of rainfall. Here, we use multiple independent satellite datasets to show that rainforest transpiration enables an increase of shallow convection that moistens and destabilizes the atmosphere during the initial stages of the dry-to-wet season transition. This shallow convection moisture pump (SCMP) preconditions the atmosphere at the regional scale for a rapid increase in rain-bearing deep convection, which in turn drives moisture convergence and wet season onset 2-3 mo before the arrival of the Intertropical Convergence Zone (ITCZ). Aerosols produced by late dry season biomass burning may alter the efficiency of the SCMP. Our results highlight the mechanisms by which interactions among land surface processes, atmospheric convection, and biomass burning may alter the timing of wet season onset and provide a mechanistic framework for understanding how deforestation extends the dry season and enhances regional vulnerability to drought.

Concepts: Rainforest, Tropics, Earth, Convergence zone, Amazon Rainforest, Precipitation, Climate, Intertropical Convergence Zone


Fluctuating climate is a hallmark of Earth. As one transcends deep into Earth time, however, both the evidence for and the causes of climate change become difficult to establish. We report geochemical and sedimentological evidence for repeated, short-term climate fluctuations from the exceptionally well-preserved ∼1.4-billion-year-old Xiamaling Formation of the North China Craton. We observe two patterns of climate fluctuations: On long time scales, over what amounts to tens of millions of years, sediments of the Xiamaling Formation record changes in geochemistry consistent with long-term changes in the location of the Xiamaling relative to the position of the Intertropical Convergence Zone. On shorter time scales, and within a precisely calibrated stratigraphic framework, cyclicity in sediment geochemical dynamics is consistent with orbital control. In particular, sediment geochemical fluctuations reflect what appear to be orbitally forced changes in wind patterns and ocean circulation as they influenced rates of organic carbon flux, trace metal accumulation, and the source of detrital particles to the sediment.

Concepts: Term, Climate, Monsoon, Petrology, Climate change, Intertropical Convergence Zone, Sediment, Convergence zone


Understanding the influence of changes in solar activity on Earth’s climate and distinguishing it from other forcings, such as volcanic activity, remains a major challenge for palaeoclimatology. This problem is best approached by investigating how these variables influenced past climate conditions as recorded in high precision paleoclimate archives. In particular, determining if the climate system response to these forcings changes through time is critical. Here we use the Wiener-Granger causality approach along with well-established cross-correlation analysis to investigate the causal relationship between solar activity, volcanic forcing, and climate as reflected in well-established Intertropical Convergence Zone (ITCZ) rainfall proxy records from Yok Balum Cave, southern Belize. Our analysis reveals a consistent influence of volcanic activity on regional Central American climate over the last two millennia. However, the coupling between solar variability and local climate varied with time, with a regime shift around 1000-1300 CE after which the solar-climate coupling weakened considerably.

Concepts: Convergence zone, Paleoclimatology, Monsoon, Climate change, Solar variation, Intertropical Convergence Zone, Earth, Climate


Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

Concepts: Monsoon trough, Atlantic Ocean, United States, Thunderstorm, Convergence zone, Intertropical Convergence Zone, Equator, Tropical cyclone


Panamá’s extreme hydroclimate seasonality is driven by Intertropical Convergence Zone rainfall and resulting runoff. River discharge (Q) carries terrestrially-derived barium to coastal waters that can be recorded in coral. We present a Ba/Ca record (1996-1917) generated from a Porites coral colony in the Gulf of Chiriquí near Coiba Island (Panamá) to understand regional hydroclimate. Here coral Ba/Ca is correlated to instrumental Q (R=0.67, p<0.001), producing a seasonally-resolved Reduced Major Axis regression of Ba/Ca (μmol/mol)=Q (m(3)/s)×0.006±0.001 (μmol/mol)(m(3)/s)(-1)+4.579±0.151. Our results support work in the neighboring Gulf of Panamá that determined seawater Ba/Ca, controlled by Q, is correlated to coral Ba/Ca (LaVigne et al., 2016). Additionally, the Coiba coral Ba/Ca records at least 5 El Niño events and identified 22 of the 37 wet seasons with below average precipitation. These data corroborate the Q proxy and provide insight into the use of coral Ba/Ca as an El Niño and drought indicator.

Concepts: Precipitation, Monsoon, Calcium, Hydrology, Tropical cyclone, Intertropical Convergence Zone, Convergence zone, Water


The response of the El Niño/Southern Oscillation (ENSO) to tropical volcanic eruptions has important worldwide implications, but remains poorly constrained. Paleoclimate records suggest an “El Niño-like” warming 1 year following major eruptions [Adams JB, Mann ME, Ammann CM (2003) Nature 426:274-278] and “La Niña-like” cooling within the eruption year [Li J, et al. (2013) Nat Clim Chang 3:822-826]. However, climate models currently cannot capture all these responses. Many eruption characteristics are poorly constrained, which may contribute to uncertainties in model solutions-for example, the season of eruption occurrence is often unknown and assigned arbitrarily. Here we isolate the effect of eruption season using experiments with the Community Earth System Model (CESM), varying the starting month of two large tropical eruptions. The eruption-year atmospheric circulation response is strongly seasonally dependent, with effects on European winter warming, the Intertropical Convergence Zone, and the southeast Asian monsoon. This creates substantial variations in eruption-year hydroclimate patterns, which do sometimes exhibit La Niña-like features as in the proxy record. However, eruption-year equatorial Pacific cooling is not driven by La Niña dynamics, but strictly by transient radiative cooling. In contrast, equatorial warming the following year occurs for all starting months and operates dynamically like El Niño. Proxy reconstructions confirm these results: eruption-year cooling is insignificant, whereas warming in the following year is more robust. This implies that accounting for the event season may be necessary to describe the initial response to volcanic eruptions and that climate models may be more accurately simulating volcanic influences than previously thought.

Concepts: Volcano, Intertropical Convergence Zone, Convergence zone, Southeast Asia, Equator, Climate, Monsoon, Earth


Knowledge of spatial and temporal hydroclimatic differences is critical in understanding climatic mechanisms. Here we show striking hydroclimatic contrasts between northern and southern parts of the eastern margin of the Tibetan Plateau (ETP), and those between East Asian summer monsoon (EASM) and Indian summer monsoon (ISM) areas during the past ~2,000 years. During the Medieval Period, and the last 100 to 200 years, the southern ETP (S-ETP) area was generally dry (on average), while the northern ETP (N-ETP) area was wet. During the Little Ice Age (LIA), hydroclimate over S-ETP areas was wet, while that over N-ETP area was dry (on average). Such hydroclimatic contrasts can be broadly extended to ISM and EASM areas. We contend that changes in sea surface temperatures (SSTs) of the tropical Pacific Ocean could have played important roles in producing these hydroclimatic contrasts, by forcing the north-south movement of the Intertropical Convergence Zone (ITCZ) and intensification/slowdown of Walker circulation. The results of sensitivity experiments also support such a proposition.

Concepts: Ocean, Tropical cyclone, Asia, Convergence zone, Indian Ocean, Intertropical Convergence Zone, Equator, Monsoon


Global precipitation isoscapes based on the Global Network for Isotopes in Precipitation (GNIP) network are an important toolset that aid our understanding of global hydrologic cycles. Although the GNIP database is instrumental in developing global isoscapes, data coverage in some regions of hydrological interest (e.g., drylands) is low or non-existent thus the accuracy and relevance of global isoscapes to these regions is debatable. Capitalizing on existing literature isotope data, we generated rainfall isoscapes for Namibia (dryland) using the cokriging method and compared it to a globally fitted isoscape (GFI) downscaled to country level. Results showed weak correlation between observed and predicted isotope values in the GFI model (r2 < 0.20) while the cokriging isoscape showed stronger correlation (r2 = 0.67). The general trend of the local cokriging isoscape is consistent with synoptic weather systems (i.e., influences from Atlantic Ocean maritime vapour, Indian Ocean maritime vapour, Zaire Air Boundary, the Intertropical Convergence Zone and Tropical Temperate Troughs) and topography affecting the region. However, because we used the unweighted approach in this method, due to data scarcity, the absolute values could be improved in future studies. A comparison of local meteoric water lines (LMWL) constructed from the cokriging and GFI suggested that the GFI model still reflects the global average even when downscaled. The cokriging LMWL was however more consistent with expectations for an arid environment. The results indicate that although not ideal, for data deficient regions such as many drylands, the unweighted cokriging approach using historical local data can be an alternative approach to modelling rainfall isoscapes that are more relevant to the local conditions compared to using downscaled global isoscapes.

Concepts: Water cycle, Ocean, Monsoon, Convergence zone, Atlantic Ocean, Equator, Water, Tropical cyclone