Discover the most talked about and latest scientific content & concepts.

Concept: Control theory


Circadian (∼24 h) timekeeping is essential for the lives of many organisms. To understand the biochemical mechanisms of this timekeeping, we have developed a detailed mathematical model of the mammalian circadian clock. Our model can accurately predict diverse experimental data including the phenotypes of mutations or knockdown of clock genes as well as the time courses and relative expression of clock transcripts and proteins. Using this model, we show how a universal motif of circadian timekeeping, where repressors tightly bind activators rather than directly binding to DNA, can generate oscillations when activators and repressors are in stoichiometric balance. Furthermore, we find that an additional slow negative feedback loop preserves this stoichiometric balance and maintains timekeeping with a fixed period. The role of this mechanism in generating robust rhythms is validated by analysis of a simple and general model and a previous model of the Drosophila circadian clock. We propose a double-negative feedback loop design for biological clocks whose period needs to be tightly regulated even with large changes in gene dosage.

Concepts: CLOCK, Control theory, Period, Negative feedback, Feedback, DNA, Gene, Biology


The Lombard effect describes the automatic and involuntary increase in vocal intensity that speakers exhibit in a noisy environment. Previous studies of the Lombard effect have typically focused on the relationship between speaking and hearing. Automatic and involuntary increases in motor output have also been noted in studies of finger force production, an effect attributed to mechanisms of sensory attenuation. The present study tested the hypothesis that sensory attenuation mechanisms also underlie expression of the Lombard effect. Participants vocalized phonemes in time with a metronome, while auditory and visual feedback of their performance were manipulated or removed during the course of the trial. We demonstrate that providing a visual reference to calibrate somatosensory-based judgments of current vocal intensity resulted in reduced expression of the Lombard effect. Our results suggest that sensory attenuation effects typically seen in fingertip force production play an important role in the control of speech volume.

Concepts: Time, Sensory system, Control theory, Audio feedback, Human voice, Phonetics, Lombard effect, Auditory system


We identify robust statistical patterns in the frequency and severity of violent attacks by terrorist organizations as they grow and age. Using group-level static and dynamic analyses of terrorist events worldwide from 1968-2008 and a simulation model of organizational dynamics, we show that the production of violent events tends to accelerate with increasing size and experience. This coupling of frequency, experience and size arises from a fundamental positive feedback loop in which attacks lead to growth which leads to increased production of new attacks. In contrast, event severity is independent of both size and experience. Thus larger, more experienced organizations are more deadly because they attack more frequently, not because their attacks are more deadly, and large events are equally likely to come from large and small organizations. These results hold across political ideologies and time, suggesting that the frequency and severity of terrorism may be constrained by fundamental processes.

Concepts: Albedo, Negative feedback, Cybernetics, Audio feedback, Positive feedback, Feedback, Terrorism, Control theory


The way hemodynamic therapies are delivered today in anesthesia and critical care is suboptimal. Hemodynamic variables are not always understood correctly and used properly. The adoption of hemodynamic goal-directed strategies, known to be clinically useful, is poor. Ensuring therapies are delivered effectively is the goal of decision support tools and closed loop systems. Graphical displays (metaphor screens) may help clinicians to better capture and integrate the multivariable hemodynamic information. This may result in faster and more accurate diagnosis and therapeutic decisions. Graphical displays (target screens) have the potential to increase adherence to goal-directed strategies and ultimately improve patients' outcomes, but this remains to be confirmed by prospective studies. Closed loop systems are the ultimate solution to ensure therapies are delivered. However, most therapeutic decisions cannot be based on a limited number of output variables. Therefore, one should focus on the development of systems designed to relieve clinicians from very simple and repetitive tasks. Whether intraoperative goal-directed fluid therapy may be one of these tasks remains to be evaluated.

Concepts: Medicine, Decision theory, Classification of Pharmaco-Therapeutic Referrals, Control theory, Medical error, Graphic design, Decision support system, Therapy


The main objective of this paper is to investigate the effects of routing protocols on wireless sensor and actuator networks (WSANs), focusing on the control system response and the energy consumption of nodes in a network. We demonstrate that routing algorithms designed without considering the relationship between communication and control cannot be appropriately used in wireless networked control applications. For this purpose, an ad-hoc on-demand distance vector (AODV) routing, an IEEE 802.15.4, and a building-temperature control system are employed for this exploration. The findings from our scenarios show that the AODV routing can select a path with a high traffic load for data transmission. It takes a long time before deciding to change a new route although it experiences the unsuccessful transmission of packets. As a result, the desirable control target cannot be achieved in time, and nodes consume more energy due to frequent packet collisions and retransmissions. Consequently, we propose a simple routing solution to alleviate these research problems by modifying the original AODV routing protocol. The delay-threshold is considered to avoid any congested connection during routing procedures. The simulation results demonstrate that our solution can be appropriately applied in WSANs. Both the energy consumption and the control system response are improved.

Concepts: Control engineering, Control system, Control theory, Convergence, IS-IS, Routing, Computer network, Routing protocol


In many applications entanglement must be distributed through noisy communication channels that unavoidably degrade it. Entanglement cannot be generated by local operations and classical communication (LOCC), implying that once it has been distributed it is not possible to recreate it by LOCC. Recovery of entanglement by purely local control is however not forbidden in the presence of non-Markovian dynamics, and here we demonstrate in two all-optical experiments that such entanglement restoration can even be achieved on-demand. First, we implement an open-loop control scheme based on a purely local operation, without acquiring any information on the environment; then, we use a closed-loop scheme in which the environment is measured, the outcome controling the local operations on the system. The restored entanglement is a manifestation of “hidden” quantum correlations resumed by the local control. Relying on local control, both schemes improve the efficiency of entanglement sharing in distributed quantum networks.

Concepts: Control, Natural environment, Experiment, Environment, Feed-forward, Open-loop controller, Process control, Control theory


Sickle cell disease and β-thalassaemia are inherited haemoglobinopathies resulting in structural and quantitative changes in the β-globin chain. These changes lead to instability of the generated haemoglobin or to globin chain imbalance, which in turn impact the oxidative environment both intracellularly and extracellularly. The ensuing oxidative stress and the inability of the body to adequately overcome it are, to a large extent, responsible for the pathophysiology of these diseases. This article provides an overview of the main players and control mechanisms involved in the establishment of oxidative stress in these haemoglobinopathies.

Concepts: Disease, The Establishment, Death, Red blood cell, Sickle, Hemoglobin, Control theory, Sickle-cell disease


This paper reports a controlled breakdown (CBD) method to fabricate multiple nanopores in a silicon nitride (SiNx) membrane with control over both nanopore count and nanopore diameter. Despite the stochastic process of the breakdown, we found that the nanopores created via CBD, tend to be of the same diameter. We propose a membrane resistance model to explain and control the multiple nanopores forming in the membrane. We prove that the membrane resistance can reflect the number of nanopores in the membrane and that the diameter of the nanopores is controlled by the exposure time and strength of the electric field. This controllable multiple nanopore formation via CBD avoids the utilization of complicated instruments and time-intensive manufacturing. We anticipate CBD has the potential to become a nanopore fabrication technique which, integrated into an optical setup, could be used as a high-throughput and multichannel characterization technique.

Concepts: Nanopore, Scientific method, Science of photography, Shutter speed, Control system, Semiconductor, Control theory, Control


The artificial pancreas (closed-loop system) addresses the unmet clinical need for improved glucose control whilst reducing the burden of diabetes self-care in type 1 diabetes. Glucose-responsive insulin delivery above and below a preset insulin amount informed by sensor glucose readings differentiates closed-loop systems from conventional, threshold-suspend and predictive-suspend insulin pump therapy. Insulin requirements in type 1 diabetes can vary between one-third-threefold on a daily basis. Closed-loop systems accommodate these variations and mitigate the risk of hypoglycaemia associated with tight glucose control. In this review we focus on the progress being made in the development and evaluation of closed-loop systems in outpatient settings. Randomised transitional studies have shown feasibility and efficacy of closed-loop systems under supervision or remote monitoring. Closed-loop application during free-living, unsupervised conditions by children, adolescents and adults compared with sensor-augmented pumps have shown improved glucose outcomes, reduced hypoglycaemia and positive user acceptance. Innovative approaches to enhance closed-loop performance are discussed and we also present the outlook and strategies used to ease clinical adoption of closed-loop systems.

Concepts: Closed loop, Control theory, Diabetes, Glucagon, Diabetes mellitus type 1, Insulin pump, Diabetes mellitus, Insulin


Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

Concepts: Organisms, DNA, Control theory, Automation, Gene, Life, Organism, Biology