SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Cone cell

262

We tested whether eye color influences perception of trustworthiness. Facial photographs of 40 female and 40 male students were rated for perceived trustworthiness. Eye color had a significant effect, the brown-eyed faces being perceived as more trustworthy than the blue-eyed ones. Geometric morphometrics, however, revealed significant correlations between eye color and face shape. Thus, face shape likewise had a significant effect on perceived trustworthiness but only for male faces, the effect for female faces not being significant. To determine whether perception of trustworthiness was being influenced primarily by eye color or by face shape, we recolored the eyes on the same male facial photos and repeated the test procedure. Eye color now had no effect on perceived trustworthiness. We concluded that although the brown-eyed faces were perceived as more trustworthy than the blue-eyed ones, it was not brown eye color per se that caused the stronger perception of trustworthiness but rather the facial features associated with brown eyes.

Concepts: Eye, Photoreceptor cell, Color, Qualia, Rod cell, Cone cell, Human eye, Eye color

193

One strategy to restore vision in retinitis pigmentosa and age-related macular degeneration is cell replacement. Typically, patients lose vision when the outer retinal photoreceptor layer is lost, and so the therapeutic goal would be to restore vision at this stage of disease. It is not currently known if a degenerate retina lacking the outer nuclear layer of photoreceptor cells would allow the survival, maturation, and reconnection of replacement photoreceptors, as prior studies used hosts with a preexisting outer nuclear layer at the time of treatment. Here, using a murine model of severe human retinitis pigmentosa at a stage when no host rod cells remain, we show that transplanted rod precursors can reform an anatomically distinct and appropriately polarized outer nuclear layer. A trilaminar organization was returned to rd1 hosts that had only two retinal layers before treatment. The newly introduced precursors were able to resume their developmental program in the degenerate host niche to become mature rods with light-sensitive outer segments, reconnecting with host neurons downstream. Visual function, assayed in the same animals before and after transplantation, was restored in animals with zero rod function at baseline. These observations suggest that a cell therapy approach may reconstitute a light-sensitive cell layer de novo and hence repair a structurally damaged visual circuit. Rather than placing discrete photoreceptors among preexisting host outer retinal cells, total photoreceptor layer reconstruction may provide a clinically relevant model to investigate cell-based strategies for retinal repair.

Concepts: Retina, Eye, Photoreceptor cell, Visual system, Macular degeneration, Rod cell, Cone cell, Rhodopsin

52

Mammals receive light information through the eyes, which perform two major functions: image forming vision to see objects and non-image forming adaptation of physiology and behavior to light. Cone and rod photoreceptors form images and send the information via retinal ganglion cells to the brain for image reconstruction. In contrast, nonimage-forming photoresponses vary widely from adjustment of pupil diameter to adaptation of the circadian clock. nonimage-forming responses are mediated by retinal ganglion cells expressing the photopigment melanopsin. Melanopsin-expressing cells constitute 1-2% of retinal ganglion cells in the adult mammalian retina, are intrinsically photosensitive, and integrate photic information from rods and cones to control nonimage-forming adaptation. Action spectra of ipRGCs and of melanopsin photopigment peak around 480 nm blue light. Understanding melanopsin function lets us recognize considerable physiological effects of blue light, which is increasingly important in our modern society that uses light-emitting diode. Misalignment of circadian rhythmicity is observed in numerous conditions, including aging, and is thought to be involved in the development of age-related disorders, such as depression, diabetes, hypertension, obesity, and cancer. The appropriate regulation of circadian rhythmicity by proper lighting is therefore essential. This perspective introduces the potential risks of excessive blue light for human health through circadian rhythm disruption and sleep deprivation. Knowing the positive and negative aspects, this study claims the importance of being exposed to light at optimal times and intensities during the day, based on the concept of the circadian clock, ultimately to improve quality of life to have a healthy and longer life.

Concepts: Sleep, Retina, Eye, Photoreceptor cell, Circadian rhythm, Rod cell, Cone cell, Photosensitive ganglion cell

45

Most vertebrates have a duplex retina comprising two photoreceptor types, rods for dim-light (scotopic) vision and cones for bright-light (photopic) and color vision. However, deep-sea fishes are only active in dim-light conditions; hence, most species have lost their cones in favor of a simplex retina composed exclusively of rods. Although the pearlsides, Maurolicus spp., have such a pure rod retina, their behavior is at odds with this simplex visual system. Contrary to other deep-sea fishes, pearlsides are mostly active during dusk and dawn close to the surface, where light levels are intermediate (twilight or mesopic) and require the use of both rod and cone photoreceptors. This study elucidates this paradox by demonstrating that the pearlside retina does not have rod photoreceptors only; instead, it is composed almost exclusively of transmuted cone photoreceptors. These transmuted cells combine the morphological characteristics of a rod photoreceptor with a cone opsin and a cone phototransduction cascade to form a unique photoreceptor type, a rod-like cone, specifically tuned to the light conditions of the pearlsides' habitat (blue-shifted light at mesopic intensities). Combining properties of both rods and cones into a single cell type, instead of using two photoreceptor types that do not function at their full potential under mesopic conditions, is likely to be the most efficient and economical solution to optimize visual performance. These results challenge the standing paradigm of the function and evolution of the vertebrate duplex retina and emphasize the need for a more comprehensive evaluation of visual systems in general.

Concepts: Retina, Eye, Photoreceptor cell, Visual perception, Visual system, Color, Rod cell, Cone cell

44

Color vision deficiency (color blindness) is an inherited genetic ocular disorder. While no cure for this disorder currently exists, several methods can be used to increase the color perception of those affected. One such method is the use of color filtering glasses which are based on Bragg filters. While these glasses are effective, they are high cost, bulky, and incompatible with other vision correction eyeglasses. In this work, a rhodamine derivative is incorporated in commercial contact lenses to filter out the specific wavelength bands (≈545-575 nm) to correct color vision blindness. The biocompatibility assessment of the dyed contact lenses in human corneal fibroblasts and human corneal epithelial cells shows no toxicity and cell viability remains at 99% after 72 h. This study demonstrates the potential of the dyed contact lenses in wavelength filtering and color vision deficiency management.

Concepts: Color, Cornea, Contact lens, Color blindness, Color vision, Cone cell

42

The results of early studies on colour vision in dogs led to the conclusion that chromatic cues are unimportant for dogs during their normal activities. Nevertheless, the canine retina possesses two cone types which provide at least the potential for colour vision. Recently, experiments controlling for the brightness information in visual stimuli demonstrated that dogs have the ability to perform chromatic discrimination. Here, we show that for eight previously untrained dogs colour proved to be more informative than brightness when choosing between visual stimuli differing both in brightness and chromaticity. Although brightness could have been used by the dogs in our experiments (unlike previous studies), it was not. Our results demonstrate that under natural photopic lighting conditions colour information may be predominant even for animals that possess only two spectral types of cone photoreceptors.

Concepts: Retina, Eye, Photoreceptor cell, Visual perception, Rod cell, Color blindness, Color vision, Cone cell

28

Congenital stationary night blindness (CSNB) is a non-progressive, clinically and genetically heterogeneous disease of impaired night vision. We report a naturally-occurring, stationary, autosomal recessive phenotype in beagle dogs with normal daylight vision but absent night vision. Affected dogs had normal retinas on clinical examination, but showed no detectable rod responses. They had “negative-type” mixed rod and cone responses in full-field ERGs. Their photopic long-flash ERGs had normal OFF-responses associated with severely reduced ON-responses. The phenotype is similar to the Schubert-Bornschein form of complete CSNB in humans. Homozygosity mapping ruled out most known CSNB candidates as well as CACNA2D4 and GNB3. Three remaining genes were excluded based on sequencing the open reading frame and intron-exon boundaries (RHO, NYX), causal to a different form of CSNB (RHO) or X-chromosome (NYX, CACNA1F) location. Among the genes expressed in the photoreceptors and their synaptic terminals, and mGluR6 cascade and modulators, reduced expression of GNAT1, CACNA2D4 and NYX was observed by qRT-PCR in both carrier (n = 2) and affected (n = 2) retinas whereas CACNA1F was down-regulated only in the affecteds. Retinal morphology revealed normal cellular layers and structure, and electron microscopy showed normal rod spherules and synaptic ribbons. No difference from normal was observed by immunohistochemistry (IHC) for antibodies labeling rods, cones and their presynaptic terminals. None of the retinas showed any sign of stress. Selected proteins of mGluR6 cascade and its modulators were examined by IHC and showed that PKCα weakly labeled the rod bipolar somata in the affected, but intensely labeled axonal terminals that appeared thickened and irregular. Dendritic terminals of ON-bipolar cells showed increased Goα labeling. Both PKCα and Goα labeled the more prominent bipolar dendrites that extended into the OPL in affected but not normal retinas. Interestingly, RGS11 showed no labeling in the affected retina. Our results indicate involvement of a yet unknown gene in this canine model of complete CSNB.

Concepts: Neuron, Action potential, Retina, Eye, Photoreceptor cell, Rod cell, Cone cell, X-linked congenital stationary night blindness

28

Humans use three cone photoreceptor classes for colour vision, yet many birds, reptiles and shallow-water fish are tetrachromatic and use four cone classes. Screening pigments, that narrow the spectrum of photoreceptors in birds and diurnal reptiles, render visual systems with four cone classes more efficient. To date, however, the question of tetrachromacy in shallow-water fish, that, like humans, lack screening pigments, is still unsolved. We raise the possibility that tetrachromacy in fish has evolved in response to higher spectral complexity of underwater light. We compared the dimensionality of colour vision in humans and fish by examining the spectral complexity of the colour-signal reflected from objects into their eyes. Here we show that fish require four to six cone classes to reconstruct the colour-signal of aquatic objects at the accuracy level achieved by humans viewing terrestrial objects. This is because environmental light, which alters the colour-signals, is more complex and contains more spectral fluctuations underwater than on land. We further show that fish cones are better suited than human cones to detect these spectral fluctuations, suggesting that the capability of fish cones to detect high-frequency fluctuations in the colour-signal confers an advantage. Taken together, we propose that tetrachromacy in fish has evolved to enhance the reconstruction of complex colour-signals in shallow aquatic environments. Of course, shallow-water fish might possess less than four cone classes; however, this would come with the inevitable loss in accuracy of signal reconstruction.

Concepts: Light, Retina, Eye, Photoreceptor cell, Color blindness, Color vision, Cone cell, Tetrachromacy

28

: To review three inherited retinal disorders associated with diagnostic or pathognomonic electroretinogram (ERG) abnormalities: cone dystrophy with supernormal rod ERG (KCNV2), enhanced S-cone syndrome (NR2E3), and bradyopsia (RGS9/R9AP).

Concepts: Retina, Eye, Ophthalmology, Rod cell, Cone cell, Electroretinography, Cone dystrophy, Erg

28

Mutations in GUCY2D are associated with recessive Leber congenital amaurosis-1 (LCA1). GUCY2D encodes photoreceptor-specific, retinal guanylate cyclase-1 (RetGC1). Reports of retinal degeneration in LCA1 are conflicting; some describe no obvious degeneration and others report loss of both rods and cones. Proof of concept studies in models representing the spectrum of phenotypes is warranted. We have previously demonstrated AAV-mediated RetGC1 is therapeutic in GC1ko mice, a model exhibiting loss of cones only. The purpose of this study was to characterize AAV-mediated gene therapy in the RetGC1/RetGC2 double knockout (GCdko) mouse, a model lacking rod and cone function and exhibiting progressive loss of both photoreceptor subclasses. Use of this model also allowed for the evaluation of the functional efficiency of transgenic RetGC1 isozyme. Subretinal delivery of AAV8(Y733F) vector containing the human rhodopsin kinase (hGRK1) promoter driving murine Gucy2e was performed in GCdko mice at various postnatal time points. Treatment resulted in restoration of rod and cone function at all treatment ages and preservation of retinal structure in GCdko mice treated as late as 7 weeks of age. Functional gains and structural preservation were stable for at least 1 year. Treatment also conferred cortical- and subcortical-based visually- guided behavior. Functional efficiency of transgenic RetGC1 was indistinguishable from that of endogenous isozyme in congenic WT mice. This study clearly demonstrates AAV-mediated RetGC1 expression restores function to and preserves structure of rod and cone photoreceptors in a degenerative model of retinal guanylate cyclase deficiency, further supporting development of an AAV-based vector for treatment of LCA1.

Concepts: Gene, Retina, Eye, Photoreceptor cell, Rod cell, Leber's congenital amaurosis, GUCY2D, Cone cell