SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Condensed matter physics

191

It is believed that not all quantum systems can be simulated efficiently using classical computational resources. This notion is supported by the fact that it is not known how to express the partition function in a sign-free manner in quantum Monte Carlo (QMC) simulations for a large number of important problems. The answer to the question-whether there is a fundamental obstruction to such a sign-free representation in generic quantum systems-remains unclear. Focusing on systems with bosonic degrees of freedom, we show that quantized gravitational responses appear as obstructions to local sign-free QMC. In condensed matter physics settings, these responses, such as thermal Hall conductance, are associated with fractional quantum Hall effects. We show that similar arguments also hold in the case of spontaneously broken time-reversal (TR) symmetry such as in the chiral phase of a perturbed quantum Kagome antiferromagnet. The connection between quantized gravitational responses and the sign problem is also manifested in certain vertex models, where TR symmetry is preserved.

Concepts: Quantum mechanics, Fundamental physics concepts, Physics, Matter, Condensed matter physics, Quantum field theory, Chemistry, Quantum Hall effect

179

Globally ordered colloidal crystal lattices have broad utility in a wide range of optical and catalytic devices, for example, as photonic bandgap materials. However, the self-assembly of stereospecific structures is often confounded by polymorphism. Small free energy differences often characterize ensembles of different structures, making it difficult to produce a single morphology at will. Current techniques to handle this problem adopt one of two approaches: that of the “top-down,” or “bottom-up” methodology, whereby structures are engineered starting from the largest or smallest relevant length scales, respectively. However, recently a third approach for directing high fidelity assembly of colloidal crystals has been suggested which relies on the introduction of polymer co-solutes into the crystal phase [N. A. Mahynski, A. Z. Panagiotopoulos, D. Meng, S. K. Kumar, Nat. Commun., 2014, 5, 4472]. By tuning the polymer’s morphology to interact uniquely with the void symmetry of a single desired crystal, the entropy loss associated with polymer confinement has been shown to strongly bias the formation of that phase. However, previously this approach has only been demonstrated in the limiting case of close-packed crystals. Here we show how this approach may be generalized and extended to complex open crystals, illustrating the utility of this “structure-directing agent” paradigm in engineering the nanoscale structure of ordered colloidal materials. The high degree of transferability of this paradigm’s basic principles between relatively simple crystals and more complex ones suggests this represents a valuable addition to presently known self-assembly techniques.

Concepts: Crystal, Crystal structure, Condensed matter physics, Sol-gel, Materials science, Colloidal crystal, Photonic crystal, Crystals

172

Nonlinear and switchable metamaterials achieved by artificial structuring on the subwavelength scale have become a central topic in photonics research. Switching with only a few quanta of excitation per metamolecule, metamaterial’s elementary building block, is the ultimate goal, achieving which will open new opportunities for energy efficient signal handling and quantum information processing. Recently, arrays of Josephson junction devices have been proposed as a possible solution. However, they require extremely high levels of nanofabrication. Here we introduce a new quantum superconducting metamaterial which exploits the magnetic flux quantization for switching. It does not contain Josephson junctions, making it simple to fabricate and scale into large arrays. The metamaterial was manufactured from a high-temperature superconductor and characterized in the low intensity regime, providing the first observation of the quantum phenomenon of flux exclusion affecting the far-field electromagnetic properties of the metamaterial.

Concepts: Quantum mechanics, Physics, Condensed matter physics, Superconductivity, Josephson effect, SQUID, Magnetic flux quantum, Brian David Josephson

169

In this study, we investigate the effect of annealing and nitrogen amount on electronic transport properties in n- and p-type-doped Ga0.68In0.32NyAs1 - y/GaAs quantum well (QW) structures with y = 0%, 0.9%, 1.2%, 1.7%. The samples are thermal annealed at 700°C for 60 and 600 s, and Hall effect measurements have been performed between 10 and 300 K. Drastic decrease is observed in the electron mobility of n-type N-containing samples due to the possible N-induced scattering mechanisms and increasing effect mass of the alloy. The temperature dependence of electron mobility has an almost temperature insensitive characteristic, whereas for p-type samples hole mobility is decreased drastically at T > 120 K. As N concentration is increased, the hole mobility also increased as a reason of decreasing lattice mismatch. Screening effect of N-related alloy scattering over phonon scattering in n-type samples may be the reason of the temperature-insensitive electron mobility. At low temperature regime, hole mobility is higher than electron mobility by a factor of 3 to 4. However, at high temperatures (T > 120 K), the mobility of p-type samples is restricted by the scattering of the optical phonons. Because the valance band discontinuity is smaller compared to the conduction band, thermionic transport of holes from QW to the barrier material, GaAs, also contributes to the mobility at high temperatures that results in a decrease in mobility. The hole mobility results of as-grown samples do not show a systematic behavior, while annealed samples do, depending on N concentration. Thermal annealing does not show a significant improvement of electron mobility.

Concepts: Quantum mechanics, Condensed matter physics, Semiconductor, Gas, Phonon, Semiconductors, 2DEG, Electron hole

165

In low dimensional cuprates several interesting phenomena, including high Tc superconductivity, are deeply connected to electron correlations on Cu and the presence of the Zhang-Rice (ZR) singlet state. Here, we report on direct spectroscopic observation of the ZR state responsible for the low-energy physical properties in two isostructural A-site ordered cuprate perovskites, CaCu3Co4O12 and CaCu3Cr4O12 as revealed by resonant soft x-ray absorption spectroscopy on the Cu L3,2- and O K-edges. These measurements reveal the signature of Cu in the high-energy 3+ (3d(8)), the typical 2+ (3d(9)), as well as features of the ZR singlet state (i.e., 3d(9)L, L denotes an oxygen hole). First principles GGA + U calculations affirm that the B-site cation controls the degree of Cu-O hybridization and, thus, the Cu valency. These findings introduce another avenue for the study and manipulation of cuprates, bypassing the complexities inherent to conventional chemical doping (i.e. disorder) that hinder the relevant physics.

Concepts: Electron, Spectroscopy, X-ray, Electromagnetic radiation, Condensed matter physics, X-ray absorption spectroscopy, Superconductivity, Absorption spectroscopy

165

Quasi-particle excitations in graphene exhibit a unique behavior concerning two key phenomena of mesoscopic physics: electron localization and the quantum Hall effect. A direct transition between these two states has been found in disordered two-dimensional electron gases at low magnetic field. It has been suggested that it is a quantum phase transition, but the nature of the transition is still debated. Despite the large number of works studying either the localization or the quantum Hall regime in graphene, such a transition has not been investigated for Dirac fermions. Here we discuss measurements on low-mobility graphene where the localized state at low magnetic fields and a quantum Hall state at higher fields are observed. We find that the system undergoes a direct transition from the insulating to the Hall conductor regime. Remarkably, the transverse magneto-conductance shows a temperature independent crossing point, pointing to the existence of a genuine quantum phase transition.

Concepts: Electron, Magnetic field, Fundamental physics concepts, Spin, Condensed matter physics, Electric current, Hall effect, Quantum Hall effect

165

Recently, superconductivity was found on semiconductor surface reconstructions induced by metal adatoms, promising a new field of research where superconductors can be studied from the atomic level.Here we measure the electron transport properties of the Si(111)-(¿7 × ¿3)-In surface near the resistive phase transition and analyze the data in terms of theories of two-dimensional (2D) superconductors.In the normal state, the sheet resistances (2D resistivities) R¿ of the samples decrease significantly between 20 and 5 K, suggesting the importance of the electron-electron scattering in electron transport phenomena.The decrease in R¿ is progressively accelerated just above the transition temperature (Tc) due to the direct (Aslamazov-Larkin term) and the indirect (Maki-Thompson term) superconducting fluctuation effects.A minute but finite resistance tail is found below Tc down to the lowest temperature of 1.8 K, which may be ascribed to a dissipation due to free vortex flow.The present study lays the ground for a future research aiming to find new superconductors in this class of materials.

Concepts: Quantum mechanics, Fundamental physics concepts, Condensed matter physics, Phase transition, Superconductivity, Electrical resistance, Heike Kamerlingh Onnes, History of superconductivity

163

We investigate a hybrid electro-optomechanical system that allows us to realize controllable strong Kerr nonlinearities even in the weak-coupling regime. We show that when the controllable electromechanical subsystem is close to its quantum critical point, strong photon-photon interactions can be generated by adjusting the intensity (or frequency) of the microwave driving field. Nonlinear optical phenomena, such as the appearance of the photon blockade and the generation of nonclassical states (e.g., Schrödinger cat states), are demonstrated in the weak-coupling regime, making the observation of strong Kerr nonlinearities feasible with currently available optomechanical technology.

Concepts: Electron, Electromagnetism, Quantum mechanics, Optics, Light, Electromagnetic radiation, Condensed matter physics, Nonlinear optics

162

We study a superlattice of silicene and hexagonal boron nitride by first principles calculations and demonstrate that the interaction between the layers of the superlattice is very small. As a consequence, quasi free-standing silicene is realized in this superlattice. In particular, the Dirac cone of silicene is preserved. Due to the wide band gap of hexagonal boron nitride, the superlattice realizes the characteristic physical phenomena of free-standing silicene. In particular, we address by model calculations the combined effect of the intrinsic spin-orbit coupling and an external electric field, which induces a transition from a semimetal to a topological insulator and further to a band insulator.

Concepts: Magnetic field, Mathematics, Fundamental physics concepts, Condensed matter physics, Band gap, Philosophical terminology, Boron nitride, Aluminium nitride

149

How photoexcitations evolve into Coulomb-bound electron and hole pairs, called excitons, and unbound charge carriers is a key cross-cutting issue in photovoltaics and optoelectronics. Until now, the initial quantum dynamics following photoexcitation remains elusive in the hybrid perovskite system. Here we reveal excitonic Rydberg states with distinct formation pathways by observing the multiple resonant, internal quantum transitions using ultrafast terahertz quasi-particle transport. Nonequilibrium emergent states evolve with a complex co-existence of excitons, carriers and phonons, where a delayed buildup of excitons under on- and off-resonant pumping conditions allows us to distinguish between the loss of electronic coherence and hot state cooling processes. The nearly ∼1 ps dephasing time, efficient electron scattering with discrete terahertz phonons and intermediate binding energy of ∼13.5 meV in perovskites are distinct from conventional photovoltaic semiconductors. In addition to providing implications for coherent energy conversion, these are potentially relevant to the development of light-harvesting and electron-transport devices.

Concepts: Electron, Photon, Energy, Fundamental physics concepts, Particle physics, Condensed matter physics, Semiconductor, Atomic physics