SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Computer storage

55

We describe the first DNA-based storage architecture that enables random access to data blocks and rewriting of information stored at arbitrary locations within the blocks. The newly developed architecture overcomes drawbacks of existing read-only methods that require decoding the whole file in order to read one data fragment. Our system is based on new constrained coding techniques and accompanying DNA editing methods that ensure data reliability, specificity and sensitivity of access, and at the same time provide exceptionally high data storage capacity. As a proof of concept, we encoded parts of the Wikipedia pages of six universities in the USA, and selected and edited parts of the text written in DNA corresponding to three of these schools. The results suggest that DNA is a versatile media suitable for both ultrahigh density archival and rewritable storage applications.

Concepts: Sensitivity and specificity, Computer storage, Computer data storage, Wikipedia

34

Materials with persistent photoconductivity (PPC) experience an increase in conductivity upon exposure to light that persists after the light is turned off. Although researchers have shown that this phenomenon could be exploited for novel memory storage devices, low temperatures (below 180 K) were required. In the present work, two-point resistance measurements were performed on annealed strontium titanate (SrTiO3, or STO) single crystals at room temperature. After illumination with sub-gap light, the resistance decreased by three orders of magnitude. This markedly enhanced conductivity persisted for several days in the dark. Results from IR spectroscopy, electrical measurements, and exposure to a 405 nm laser suggest that contact resistance plays an important role. The laser was then used as an “optical pen” to write a low-resistance path between two contacts, demonstrating the feasibility of optically defined, transparent electronics.

Concepts: Strontium, Energy, Optics, Light, Optical fiber, Computer storage, Infrared, Strontium titanate

30

An entire 1-kilobit crossbar device based upon SiOx resistive memories with integrated diodes has been made. The SiOx -based one diode-one resistor device system has promise to satisfy the prerequisite conditions for next generation non-volatile memory applications.

Concepts: Memory, Array, Computer storage, Non-volatile memory, Computer data storage

28

The exponential growth of high-throughput DNA sequence data has posed great challenges to genomic data storage, retrieval and transmission. Compression is a critical tool to address these challenges, where many methods have been developed to reduce the storage size of the genomes and sequencing data (reads, quality scores and metadata). However, genomic data are being generated faster than they could be meaningfully analyzed, leaving a large scope for developing novel compression algorithms that could directly facilitate data analysis beyond data transfer and storage. In this article, we categorize and provide a comprehensive review of the existing compression methods specialized for genomic data and present experimental results on compression ratio, memory usage, time for compression and decompression. We further present the remaining challenges and potential directions for future research.

Concepts: DNA, Gene, Genome, Computer storage, Data compression, Media technology, Computer data storage, Image compression

28

Flexible organic memory devices are one of the integral components for future flexible organic electronics. However, high-density all-organic memory cell arrays on malleable substrates without cross-talk have not been demonstrated because of difficulties in their fabrication and relatively poor performances to date. Here we demonstrate the first flexible all-organic 64-bit memory cell array possessing one diode-one resistor architectures. Our all-organic one diode-one resistor cell exhibits excellent rewritable switching characteristics, even during and after harsh physical stresses. The write-read-erase-read output sequence of the cells perfectly correspond to the external pulse signal regardless of substrate deformation. The one diode-one resistor cell array is clearly addressed at the specified cells and encoded letters based on the standard ASCII character code. Our study on integrated organic memory cell arrays suggests that the all-organic one diode-one resistor cell architecture is suitable for high-density flexible organic memory applications in the future.

Concepts: Enzyme, Data, Computer storage, Non-volatile memory, Computer data storage, Flash memory, ASCII, Character encoding

28

Memory cells are an important building block of digital electronics. We combine here the unique electronic properties of semiconducting monolayer MoS2 with the high conductivity of graphene to build a 2D heterostructure capable of information storage. MoS2 acts as a channel in an intimate contact with graphene electrodes in a field-effect transistor geometry. Our prototypical all-2D transistor is further integrated with a multilayer graphene charge trapping layer into a device that can be operated as a nonvolatile memory cell. Because of its band gap and 2D nature, monolayer MoS2 is highly sensitive to the presence of charges in the charge trapping layer, resulting in a factor of 10(4) difference between memory program and erase states. The two-dimensional nature of both the contact and the channel can be harnessed for the fabrication of flexible nanoelectronic devices with large-scale integration.

Concepts: Semiconductor, Transistor, Computer, Computer storage, Electronics, Electronic band structure, Non-volatile memory, Computer data storage

28

A flexible, all reduced graphene oxide non-volatile memory device, with lightly reduced GO as an active layer and highly reduced GO as both top and bottom electrodes, is fabricated by a full-solution process and its performance is characterized. It provides a convenient method to construct other all-carbon devices.

Concepts: Device, Computer storage, Non-volatile memory, Computer data storage, Flash memory, Computer memory

27

Here we demonstrate a room temperature processed nonvolatile memory device based on an Al/AlOx/CdTe:Sb nanowire (NW) heterojunction. Electrical analysis shows an echelon hysteresis composed of a high-resistance state (HRS) and a low-resistance state (LRS), which can allow it to write and erase data from the device. The conductance ratio is as high as 10(6), with a retention time of 3 × 10(4) s. Moreover, the SET voltages ranged from +6 to +8 V, whilst the RESET voltage ∼0 V. In addition, flexible memory nano-devices on PET substrate with comparable switching performance at bending condition were fabricated. XPS analysis of the Al/AlOx/CdTe:Sb NW heterojunction after controlled Ar(+) bombardment reveals that this memory behavior is associated with the presence of ultra-thin AlOx film. This Al/AlOx/CdTe:Sb NW heterojunction will open up opportunities for new memory devices with different configurations.

Concepts: Data, Device, Direct current, Alternating current, Computer storage, Voltage, Non-volatile memory, Computer data storage

27

Atomically thin two-dimensional materials have emerged as promising candidates for flexible and transparent electronic applications. Here we show non-volatile memory devices, based on field-effect transistors with large hysteresis, consisting entirely of stacked two-dimensional materials. Graphene and molybdenum disulphide were employed as both channel and charge-trapping layers, whereas hexagonal boron nitride was used as a tunnel barrier. In these ultrathin heterostructured memory devices, the atomically thin molybdenum disulphide or graphene-trapping layer stores charge tunnelled through hexagonal boron nitride, serving as a floating gate to control the charge transport in the graphene or molybdenum disulphide channel. By varying the thicknesses of two-dimensional materials and modifying the stacking order, the hysteresis and conductance polarity of the field-effect transistor can be controlled. These devices show high mobility, high on/off current ratio, large memory window and stable retention, providing a promising route towards flexible and transparent memory devices utilizing atomically thin two-dimensional materials.

Concepts: Transistor, Graphite, Bipolar junction transistor, Field-effect transistor, Computer storage, Non-volatile memory, Boron nitride, Flash memory

24

Emerging nanoionic memristive devices are considered as the memory technology of the future and have been winning a great deal of attention due to their ability to perform fast and at the expense of low-power and -space requirements. Their full potential is envisioned that can be fulfilled through their capacity to store multiple memory states per cell, which however has been constrained so far by issues affecting the long-term stability of independent states. Here, we introduce and evaluate a multitude of metal-oxide bi-layers and demonstrate the benefits from increased memory stability via multibit memory operation. We propose a programming methodology that allows for operating metal-oxide memristive devices as multibit memory elements with highly packed yet clearly discernible memory states. These states were found to correlate with the transport properties of the introduced barrier layers. We are demonstrating memory cells with up to 6.5 bits of information storage as well as excellent retention and power consumption performance. This paves the way for neuromorphic and non-volatile memory applications.

Concepts: Demonstration, Computer program, Programming language, Computer storage, Computer programming, Introduction, Non-volatile memory, Computer data storage