SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Computer data storage

543

Marital discord is costly to children, families, and communities. The advent of the Internet, social networking, and on-line dating has affected how people meet future spouses, but little is known about the prevalence or outcomes of these marriages or the demographics of those involved. We addressed these questions in a nationally representative sample of 19,131 respondents who married between 2005 and 2012. Results indicate that more than one-third of marriages in America now begin on-line. In addition, marriages that began on-line, when compared with those that began through traditional off-line venues, were slightly less likely to result in a marital break-up (separation or divorce) and were associated with slightly higher marital satisfaction among those respondents who remained married. Demographic differences were identified between respondents who met their spouse through on-line vs. traditional off-line venues, but the findings for marital break-up and marital satisfaction remained significant after statistically controlling for these differences. These data suggest that the Internet may be altering the dynamics and outcomes of marriage itself.

Concepts: Marriage, Computer data storage, Online and offline

251

The negatively charged nitrogen vacancy (NV(-)) center in diamond is the focus of widespread attention for applications ranging from quantum information processing to nanoscale metrology. Although most work so far has focused on the NV(-) optical and spin properties, control of the charge state promises complementary opportunities. One intriguing possibility is the long-term storage of information, a notion we hereby introduce using NV-rich, type 1b diamond. As a proof of principle, we use multicolor optical microscopy to read, write, and reset arbitrary data sets with two-dimensional (2D) binary bit density comparable to present digital-video-disk (DVD) technology. Leveraging on the singular dynamics of NV(-) ionization, we encode information on different planes of the diamond crystal with no cross-talk, hence extending the storage capacity to three dimensions. Furthermore, we correlate the center’s charge state and the nuclear spin polarization of the nitrogen host and show that the latter is robust to a cycle of NV(-) ionization and recharge. In combination with super-resolution microscopy techniques, these observations provide a route toward subdiffraction NV charge control, a regime where the storage capacity could exceed present technologies.

Concepts: Electron, Electric charge, Photon, Fundamental physics concepts, Dimension, Microscopy, Spintronics, Computer data storage

176

Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.

Concepts: Mathematics, Computer, Number, Computational complexity theory, Computer data storage, Numeral system, Boolean logic, Number theory

165

Resistive random access memory based on the resistive switching phenomenon is emerging as a strong candidate for next generation non-volatile memory. So far, the resistive switching effect has been observed in many transition metal oxides, including strongly correlated ones, such as, cuprate superconductors, colossal magnetoresistant manganites and Mott insulators. However, up to now, no clear evidence of the possible relevance of strong correlation effects in the mechanism of resistive switching has been reported. Here, we study Pr0.7Ca0.3MnO3, which shows bipolar resistive switching. Performing micro-spectroscopic studies on its bare surface we are able to track the systematic electronic structure changes in both, the low and high resistance state. We find that a large change in the electronic conductance is due to field-induced oxygen vacancies, which drives a Mott metal-insulator transition at the surface. Our study demonstrates that strong correlation effects may be incorporated to the realm of the emerging oxide electronics.

Concepts: Oxygen, Oxide, Valence electron, Correlation and dependence, Superconductivity, Electrical resistance, Computer data storage, High-temperature superconductivity

66

Digital information is accumulating at an astounding rate, straining our ability to store and archive it. DNA is among the most dense and stable information media known. The development of new technologies in both DNA synthesis and sequencing make DNA an increasingly feasible digital storage medium. We developed a strategy to encode arbitrary digital information in DNA, wrote a 5.27-megabit book using DNA microchips, and read the book by using next-generation DNA sequencing.

Concepts: Communication, Paper, Electronic media, Computer data storage, Library

55

We describe the first DNA-based storage architecture that enables random access to data blocks and rewriting of information stored at arbitrary locations within the blocks. The newly developed architecture overcomes drawbacks of existing read-only methods that require decoding the whole file in order to read one data fragment. Our system is based on new constrained coding techniques and accompanying DNA editing methods that ensure data reliability, specificity and sensitivity of access, and at the same time provide exceptionally high data storage capacity. As a proof of concept, we encoded parts of the Wikipedia pages of six universities in the USA, and selected and edited parts of the text written in DNA corresponding to three of these schools. The results suggest that DNA is a versatile media suitable for both ultrahigh density archival and rewritable storage applications.

Concepts: Sensitivity and specificity, Computer storage, Computer data storage, Wikipedia

50

Conventional computers based on the von Neumann architecture perform computation by repeatedly transferring data between their physically separated processing and memory units. As computation becomes increasingly data centric and the scalability limits in terms of performance and power are being reached, alternative computing paradigms with collocated computation and storage are actively being sought. A fascinating such approach is that of computational memory where the physics of nanoscale memory devices are used to perform certain computational tasks within the memory unit in a non-von Neumann manner. We present an experimental demonstration using one million phase change memory devices organized to perform a high-level computational primitive by exploiting the crystallization dynamics. Its result is imprinted in the conductance states of the memory devices. The results of using such a computational memory for processing real-world data sets show that this co-existence of computation and storage at the nanometer scale could enable ultra-dense, low-power, and massively-parallel computing systems.

Concepts: Quantum mechanics, Computer, Computation, Computer science, Computing, Computer data storage, John von Neumann, Von Neumann architecture

42

As the cost of sequencing continues to decrease and the amount of sequence data generated grows, new paradigms for data storage and analysis are increasingly important. The relative scaling behavior of these evolving technologies will impact genomics research moving forward.

Concepts: Series, Topology, Sequence, Computer data storage, The Real, Real analysis, Limit of a sequence, Cauchy sequence

34

Control of magnetism on the atomic scale is becoming essential as data storage devices are miniaturized. We show that antiferromagnetic nanostructures, composed of just a few Fe atoms on a surface, exhibit two magnetic states, the Néel states, that are stable for hours at low temperature. For the smallest structures, we observed transitions between Néel states due to quantum tunneling of magnetization. We sensed the magnetic states of the designed structures using spin-polarized tunneling and switched between them electrically with nanosecond speed. Tailoring the properties of neighboring antiferromagnetic nanostructures enables a low-temperature demonstration of dense nonvolatile storage of information.

Concepts: Magnetism, Computer data storage

32

Oxide-based two-terminal resistive random access memory (RRAM) is considered one of the most promising candidates for next-generation nonvolatile memory. We introduce here a new RRAM memory structure employing a nanoporous (NP) silicon oxide (SiOx) material which enables unipolar switching through its internal vertical-nanogap. Through the control of the stochastic filament formation at low voltage, the NP SiOx memory exhibited extremely low electroforming voltage (~ 1.6 V) and outstanding performance metrics. These include multi-bit storage ability (up to 9-bits), high ON-OFF ratio (up to 10(7) A), long high-temperature lifetime (≥ 10(4) s at 100 °C), excellent cycling endurance (≥ 10(5)), sub-50 ns switching speeds, and low power consumption (~ 6 x 10(-5) W/bit). Also provided is room temperature processability for versatile fabrication without any compliance current being needed during electroforming or switching operations. Taken together, these metrics in NP SiOx RRAM provide a route toward easily accessed nonvolatile memory applications.

Concepts: Oxygen, Oxide, Silicon, Quartz, Silicon dioxide, Non-volatile memory, Computer data storage, Computer memory