Discover the most talked about and latest scientific content & concepts.

Concept: Compound management


With the potential for each droplet to act as a unique reaction vessel, droplet microfluidics is a powerful tool for high-throughput discovery. Any attempt at compound screening miniaturization must address the significant scaling inefficiencies associated with library handling and distribution. Eschewing microplate-based compound collections for one-bead-one-compound (OBOC) combinatorial libraries, we have developed hνSABR (Light-Induced and -Graduated High-Throughput Screening After Bead Release), a microfluidic architecture that integrates a suspension hopper for sedimentation-mediated compound library bead introduction, droplet generation, microfabricated waveguides that precisely irradiate (365 nm) the droplet flow and photochemically cleave the compound from the bead to dose the droplet, incubation, and laser-induced fluorescence for assay readout. Avobenzone-doped PDMS (0.6% w/w) patterning confines UV exposure to the desired illumination region, generating in-droplet compound concentrations (> 10 µM) that are reproducible between devices. Beads displaying photocleavable pepstatin A were distributed into droplets and exposed with 5 different UV intensities to demonstrate dose-response screening in an HIV-1 protease activity assay. This microfluidic architecture introduces a new analytical approach for OBOC library screening, and represents a key component of a next-generation distributed small molecule discovery platform.

Concepts: Pepsin, HIV, Molecule, Fluorescence, Drug discovery, Compound management, Surface tension, Chemistry


MOTIVATION: In the drug discovery field, new uses for old drugs, selective optimization of side activities and fragment-based drug design (FBDD) have proved to be successful alternatives to high-throughput screening. e-Drug3D is a database of 3D chemical structures of drugs that provides several collections of ready-to-screen SD files of drugs and commercial drug fragments. They are natural inputs in studies dedicated to drug repurposing and FBDD. AVAILABILITY: e-Drug3D collections are freely available at either for download or for direct in silico web-based screenings.

Concepts: Drug discovery hit to lead, Compound management, Drug development, High-throughput screening, Bioinformatics, Virtual screening, Drug discovery, Pharmacology


During the past decade, virtual screening (VS) has come of age. In this review, we document the evolution and maturation of VS from a rather exotic, stand-alone method towards a versatile hit and lead identification technology. VS campaigns have become fully integrated into drug discovery campaigns, evenly matched and complementary to high-throughput screening (HTS) methods. Here, we propose a novel classification of VS applications to help to monitor the advances in VS and to support future improvement of computational hit and lead identification methods. Several relevant VS studies from recent publications, in both academic and industrial settings, were selected to demonstrate the progress in this area. Furthermore, we identify challenges that lie ahead for the development of integrated VS campaigns.

Concepts: Identification, Integral, Drug discovery hit to lead, Compound management, Virtual screening, Bioinformatics, High-throughput screening, Drug discovery


Histone acetyltransferases (HATs) catalyze the acetylation of specific lysine residues in histone and nonhistone proteins. Recent studies showed that acetylation is widely distributed among cellular proteins, suggestive of diverse functions of HATs in cellular pathways. Nevertheless, currently available assays for HAT activity study are still quite limited. Here, we evaluated a series of thiol-sensitive fluorogenic compounds for the detection of the enzymatic activities of different HAT proteins. Upon conjugation to the thiol group of HSCoA, these molecules gain enhanced quantum yields and strong fluorescence, permitting facile quantitation of HAT activities. We investigated and compared the assay performances of these fluorogenic compounds for their capability as HAT activity reporters, including kinetics of reaction with HSCoA, influence on HAT activity, and fluorescence amplification factors. Our data suggest that CPM and coumarin maleic acid ester are excellent HAT probes owing to their fast reaction kinetics and dramatic fluorescence enhancement during the HAT reaction. Further, the microtiter plate measurements show that this fluorescent approach is robust and well suited for adaption to high-throughput screening of small molecule inhibitors of HATs, highlighting the value of this assay strategy in new drug discovery.

Concepts: Histone acetyltransferase, Transition state, Compound management, Lysine, Acetylation, High-throughput screening, Protein, Drug discovery


High-throughput screening (HTS) previously identified benzimidazole 1 (JMN3-003) as a compound with broad antiviral activity against different influenza viruses and paramyxovirus strains. In pursuit of a lead compound from this series for development, we sought to increase both the potency and the aqueous solubility of 1. Lead optimization has achieved compounds with potent antiviral activity against a panel of myxovirus family members (EC(50) values in the low nanomolar range) and much improved aqueous solubilities relative to that of 1. Additionally, we have devised a robust synthetic strategy for preparing 1 and congeners in an enantio-enriched fashion, which has allowed us to demonstrate that the (S)-enantiomers are generally 7- to 110-fold more potent than the corresponding ®-isomers.

Concepts: Compound management, Chemical compound, High-throughput screening, Pharmacology, Solubility, Drug discovery hit to lead, Influenza, Drug discovery


In the early stages of drug discovery, high-throughput screening (HTS) of compound libraries against pharmaceutical targets was a common method to identify potential lead molecules. For these HTS campaigns to be efficient and successful, continuous quality control of the compound collection is necessary and crucial. However, the large number of compound samples and the limited sample amount pose unique challenges. Presented here is a proof-of-concept study for a novel process flow for the quality control screening of small-molecule compound libraries that consumes only minimal amounts of samples and affords compound-specific molecular data. This process employs an acoustic sample deposition (ASD) technique for the offline sample preparation by depositing nanoliter volumes in an array format onto microscope glass slides followed by matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) analysis. An initial study of a 384-compound array employing the ASD-MALDI-MS workflow resulted in a 75% first-pass positive identification rate with an analysis time of <1 s per sample.

Concepts: Virtual screening, Pharmacology, Compound management, Pharmacy, High-throughput screening, Drug discovery, Management, Molecule


ABSTRACT Micro- and nanoscale technologies have radically transformed biological research from genomics to tissue engineering, with the relative exception of microbial cell culture, which is still largely performed in microtiter plates and petri dishes. Here, we present nanoscale culture of the opportunistic fungal pathogen Candida albicans on a microarray platform. The microarray consists of 1,200 individual cultures of 30 nl of C. albicans biofilms (“nano-biofilms”) encapsulated in an inert alginate matrix. We demonstrate that these nano-biofilms are similar to conventional macroscopic biofilms in their morphological, architectural, growth, and phenotypic characteristics. We also demonstrate that the nano-biofilm microarray is a robust and efficient tool for accelerating the drug discovery process: (i) combinatorial screening against a collection of 28 antifungal compounds in the presence of immunosuppressant FK506 (tacrolimus) identified six drugs that showed synergistic antifungal activity, and (ii) screening against the NCI challenge set small-molecule library identified three heretofore-unknown hits. This cell-based microarray platform allows for miniaturization of microbial cell culture and is fully compatible with other high-throughput screening technologies. IMPORTANCE Microorganisms are typically still grown in petri dishes, test tubes, and Erlenmeyer flasks in spite of the latest advances in miniaturization that have benefitted other allied research fields, including genomics and proteomics. Culturing microorganisms in small scale can be particularly valuable in cutting down time, cost, and reagent usage. This paper describes the development, characterization, and application of nanoscale culture of an opportunistic fungal pathogen, Candida albicans. Despite a more than 2,000-fold reduction in volume, the growth characteristics and drug response profiles obtained from the nanoscale cultures were comparable to the industry standards. The platform also enabled rapid identification of new drug candidates that were effective against C. albicans biofilms, which are a major cause of mortality in hospital-acquired infections.

Concepts: Bioinformatics, Compound management, High-throughput screening, Biotechnology, Candidiasis, Microbiology, Bacteria, Drug discovery


Autophagy is a critical regulator of cellular homeostasis, dysregulation of which is associated with diverse diseases. Here we show therapeutic effects of a novel autophagy enhancer identified by high-throughput screening of a chemical library against metabolic syndrome. An autophagy enhancer increases LC3-I to LC3-II conversion without mTOR inhibition. MSL, an autophagy enhancer, activates calcineurin, and induces dephosphorylation/nuclear translocation of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy gene expression. MSL accelerates intracellular lipid clearance, which is reversed by lalistat 2 or Tfeb knockout. Its administration improves the metabolic profile of ob/ob mice and ameliorates inflammasome activation. A chemically modified MSL with increased microsomal stability improves the glucose profile not only of ob/ob mice but also of mice with diet-induced obesity. Our data indicate that our novel autophagy enhancer could be a new drug candidate for diabetes or metabolic syndrome with lipid overload.

Concepts: High-throughput screening, Cancer, Nutrition, DNA, Compound management, Drug discovery, Gene, Gene expression


Whole-organism chemical screening can circumvent bottlenecks that impede drug discovery. However, in vivo screens have not attained throughput capacities possible with in vitro assays. We therefore developed a method enabling in vivo high-throughput screening (HTS) in zebrafish, termed automated reporter quantification in vivo (ARQiv). Here, ARQiv was combined with robotics to fully actualize whole-organism HTS (ARQiv-HTS). In a primary screen, this platform quantified cell-specific fluorescent reporters in >500,000 transgenic zebrafish larvae to identify FDA-approved drugs that increased the number of insulin-producing β cells in the pancreas. Twenty-four drugs were confirmed as inducers of endocrine differentiation and/or stimulators of β-cell proliferation. Further, we discovered novel roles for NF-κB signaling in regulating endocrine differentiation and for serotonergic signaling in selectively stimulating β-cell proliferation. These studies demonstrate the power of ARQiv-HTS for drug discovery and provide unique insights into signaling pathways controlling β-cell mass, potential therapeutic targets for treating diabetes.

Concepts: Virtual screening, Compound management, Drug discovery, Quantification, In vivo, High-throughput screening, In vitro, Pancreas


High-throughput screening (HTS) in whole cells is widely pursued to find compounds active against Mycobacterium tuberculosis (Mtb) for further development towards new tuberculosis (TB) drugs. Hit rates from these screens, usually conducted at 10 to 25 µM concentrations, typically range from less than 1% to the low single digits. New approaches to increase the efficiency of hit identification are urgently needed to learn from past screening data. The pharmaceutical industry has for many years taken advantage of computational approaches to optimize compound libraries for in vitro testing, a practice not fully embraced by academic laboratories in the search for new TB drugs. Adapting these proven approaches, we have recently built and validated Bayesian machine learning models for predicting compounds with activity against Mtb based on publicly available large-scale HTS data from the Tuberculosis Antimicrobial Acquisition Coordinating Facility. We now demonstrate the largest prospective validation to date in which we computationally screened 82,403 molecules with these Bayesian models, assayed a total of 550 molecules in vitro, and identified 124 actives against Mtb. Individual hit rates for the different datasets varied from 15-28%. We have identified several FDA approved and late stage clinical candidate kinase inhibitors with activity against Mtb which may represent starting points for further optimization. The computational models developed herein and the commercially available molecules derived from them are now available to any group pursuing Mtb drug discovery.

Concepts: Compound management, Mycobacterium, High-throughput screening, In vitro, Drug discovery, Pharmacology, Machine learning, Tuberculosis