Discover the most talked about and latest scientific content & concepts.

Concept: Compost


The contamination of the environment with microplastic, defined as particles smaller than 5 mm, has emerged as a global challenge because it may pose risks to biota and public health. Current research focuses predominantly on aquatic systems, whereas comparatively little is known regarding the sources, pathways, and possible accumulation of plastic particles in terrestrial ecosystems. We investigated the potential of organic fertilizers from biowaste fermentation and composting as an entry path for microplastic particles into the environment. Particles were classified by size and identified by attenuated total reflection-Fourier transform infrared spectroscopy. All fertilizer samples from plants converting biowaste contained plastic particles, but amounts differed significantly with substrate pretreatment, plant, and waste (for example, household versus commerce) type. In contrast, digestates from agricultural energy crop digesters tested for comparison contained only isolated particles, if any. Among the most abundant synthetic polymers observed were those used for common consumer products. Our results indicate that depending on pretreatment, organic fertilizers from biowaste fermentation and composting, as applied in agriculture and gardening worldwide, are a neglected source of microplastic in the environment.

Concepts: Agriculture, Fertilizer, Urea, Compost, Organic fertilizer, Manure, Green manure, Vermicompost


Previous studies indicated that the quality of tropical composts is poorer than that of composts produced in temperate regions. The aim of this study was to test the type of manure, the use of co-composting with green waste, and the stabilization method for their ability to improve compost quality in the tropics. We produced 68 composts and vermicomposts that were analysed for their C, lignin and NPK contents throughout the composting process. Bayesian networks were used to assess the mechanisms controlling compost quality. The concentration effect, for C and lignin, and the initial blend quality, for NPK content, were the main factors affecting compost quality. Cattle manure composts presented the highest C and lignin contents, and poultry litter composts exhibited the highest NPK content. Co-composting improved quality by enhancing the concentration effect, which reduced the impact of C and nutrient losses. Vermicomposting did not improve compost quality; co-composting without earthworms thus appears to be a suitable stabilization method under the conditions of this study because it produced high quality composts and is easier to implement.

Concepts: Tropics, Bayesian network, Networks, Bayesian probability, Humus, Compost, Composting, Vermicompost


Steroid oestrogens (SE) are released by humans and animals into the environment. In the Mekong Delta animal excrement is directly discharged into surface water and can pollute the water. Only a few animal production sites are currently treating the excrement in either biogas plants or vermicomposting systems. The concentration of SE in manures from pigs and cattle was monitored in the Mekong Delta, Vietnam. Fresh cow faeces had an oestrogen concentration of 3.3 ng E2 eq/g dry weight. The SE concentration in effluent from biogas plants fed with animal manures was 341 ng E2 eq/L. Most of the SE were in the solid phase (77.9-98.7%). Vermicomposting reduced SE to 95% of the original input.

Concepts: Photosynthesis, Plant, Cattle, Anaerobic digestion, Feces, Compost, Manure, Cow dung


The fate of chlortetracycline (CTC), sulfadiazine (SDZ) and ciprofloxacin (CIP) during composting of swine manure and their effect on composting process were investigated. Swine manure was spiked with antibiotics, mixed with saw dust (1:1 on DW basis) and composted for 56d. Antibiotics were spiked to a final concentration of 50mg/kg CTC+10mg/kg SDZ+10mg/kg CIP (High-level) or 5mg/kg CTC+1mg/kg SDZ+1mg/kg CIP (Low-level), and a control without antibiotics. Antibiotics at high concentrations delayed the initial decomposition that also affected the nitrogen mineralization. CTC and SDZ were completely removed from the composting mass within 21 and 3d, respectively; whereas, 17-31% of the spiked CIP remained in the composting mass. Therefore, composting could effectively remove the CTC and SDZ spiked even at high concentrations, but the removal of ciprofloxacin (belonging to fluoroquinolone) needs to be improved, indicating this antibiotic may get into the ecosystem through land application of livestock compost.

Concepts: Agriculture, Fertilizer, Humus, Quinolone, Compost, Composting, Vermicompost, Mulch


Twenty-five comparative cycle assessments (LCAs) addressing food waste treatment were reviewed, including the treatment alternatives landfill, thermal treatment, compost (small and large scale) and anaerobic digestion. The global warming potential related to these treatment alternatives varies largely amongst the studies. Large differences in relation to setting of system boundaries, methodological choices and variations in used input data were seen between the studies. Also, a number of internal contradictions were identified, many times resulting in biased comparisons between alternatives. Thus, noticed differences in global warming potential are not found to be a result of actual differences in the environmental impacts from studied systems, but rather to differences in the performance of the study. A number of key issues with high impact on the overall global warming potential from different treatment alternatives for food waste were identified through the use of one-way sensitivity analyses in relation to a previously performed LCA of food waste management. Assumptions related to characteristics in treated waste, losses and emissions of carbon, nutrients and other compounds during the collection, storage and pretreatment, potential energy recovery through combustion, emissions from composting, emissions from storage and land use of bio-fertilizers and chemical fertilizers and eco-profiles of substituted goods were all identified as highly relevant for the outcomes of this type of comparisons. As the use of LCA in this area is likely to increase in coming years, it is highly relevant to establish more detailed guidelines within this field in order to increase both the general quality in assessments as well as the potentials for cross-study comparisons.

Concepts: Carbon dioxide, Anaerobic digestion, Waste management, Potential energy, Methane, Compost, Mechanical biological treatment, Composting


Parascaris equorum generally infects horses less than 18 months old and its pathological effects can be severe. Infection occurs when larvated eggs, present in pastures, paddocks, stalls, and on feeding and watering equipment are ingested. The purpose of this study was to examine the effects of windrow composting on the viability of P. equorum eggs at a cooperating central Kentucky horse farm. Three grams of feces containing 2216 P. equorum eggs per gram were sealed in filter bag sentinel chambers. Chambers were exposed to 1 of 3 treatments: constant exposure or intermittent exposure to the interior of the windrow; controls were stored at 4°C. At day 0, all chambers in the experimental treatments were placed in the center of 10 locations of the windrow. On subsequent days when the windrow was turned, chambers in the constant exposure treatment were returned to the interior of the windrow and chambers in the intermittent exposure treatment were alternated between resting on top of, or inside, the windrow. Chambers from each treatment and control chambers were removed at days 2, 4, 6, 8, 10, 12, 14, and 18; and incubated for 21 days at room temperature (24°C). After incubation, eggs were recovered from the chambers using double centrifugation flotation. Eggs were evaluated microscopically, staged according to development and classified as viable or nonviable based on whether embryonation to the larval stage had occurred. Results were reported as the mean percent viable eggs for each treatment and time point. A mixed linear model with repeated measures was used to evaluate the influence of experimental day and treatment on the percent viability of P. equorum eggs. Chambers treated with constant exposure contained 10.73% (SD=0.29) viable eggs on day 2 and declined to an average of 0.00% by day 8. Chambers exposed to the intermittent treatment contained 16.08% (SD=0.26) viable eggs on day 2 and decreased to 0.00% by day 6. Control chambers for days 2, 4, 6, 8, 10, 12, 14, and 18 all had viabilities above 79.00%. A significant fixed effect of experimental day (p<0.0001) and compost treatment (p<0.0001) was observed. There was no significant interaction between experimental day and compost treatment (p>0.7459). The results of this study demonstrate that windrow composting was effective at rendering P. equorum eggs nonviable when it was tested under the conditions at a working horse farm.

Concepts: Larva, Effectiveness, Compost, Composting, British Columbia Interior, Vermicompost, In-vessel composting, Gram


This study sought to evaluate the efficacy of aerobic and anaerobic composting of inoculated banana peels, and assess the agronomic value of banana peel-based compost. Changes in the chemical composition under aerobic and anaerobic conditions were examined for four formulations of banana peel-based wastes over a period of 12weeks. The formulations i.e. plain banana peel (B), and a mixture with either cow dung (BC), poultry litter (BP) or earthworm (BE) were separately composted under aerobic and anaerobic conditions under laboratory conditions. Inoculation with either cow dung or poultry litter significantly facilitated mineralization in the order: BP>BC>B. The rate of decomposition was significantly faster under aerobic than in anaerobic composting conditions. The final composts contained high K (>100gkg(-1)) and TN (>2%), indicating high potential as a source of K and N fertilizer.

Concepts: Nitrogen, Waste management, Humus, Compost, Composting, Manure, Anaerobic exercise, Vermicompost


Municipal solid waste management (MSWM) is an important, practical and challenging environmental subject. The processes of a MSWM system include household collection, transportation, treatment, material recycling, compost and disposal. A regional program of MSWM is more complicated owing to the involvement of multi-municipality and multi-facility issues. Therefore, an effective decision support system capable of solving regional MSWM problems is necessary for decision-makers. This article employs linear programming techniques to establish a MSWM decision support system (MSWM-DSS) that is able to determine the least costs of regional MSWM strategies. The results of investigating a real-world case in central Taiwan indicate that a regional program is more economical and efficient. For the redeployment of MSW streams, the relatively least cost of operation for the MSWM system can still be achieved through the re-estimation of the MSWM-DSS. This tool and results are useful for MSWM policy-making in central Taiwan.

Concepts: Decision theory, Waste management, Decision support system, Recycling, Waste-to-energy, Waste, Decision engineering, Compost


Cellulose decomposing microorganisms (CDMs) are important for efficient bioconversion of plant biomasses. To this end, we isolated seven fungal isolates (Aspergillus wentii, Fusarium solani, Mucor sp., Penicillum sp., Trichoderma harzaianum, Trichoderma sp.1 and Trichoderma sp.2) and three bacterial isolates (bacterial isolate I, II and III) from partially decomposed farm yard manure, rice straw and vermicompost, and evaluated them for decomposition of rice straw (Oryza sativa), Ipomoea camea and Eichhornia crassipes biomass. CDMs inoculation, in general, reduced the composting period by 14-28 days in rice straw, 14-34 days in Eichhornia and 10-28 days in Ipomoea biomass over control. Of the 10 CDMs tested, Mucor sp. was found to be the most effective as Mucor-inoculated biomass required minimum time, i.e. 84, 68 and 80 days respectively for composting of rice straw, Eichhornia and Ipomoea biomass as against 112, 102 and 108 days required under their respective control. CDMs inoculation also narrowed down the C:N ratio of the composts which ranged from 19.1-22.7, 12.9-14.7 and 10.5-13.1 in rice straw, Eichhornia and Ipomoea biomass respectively as against 24.1, 17.1 and 16.2 in the corresponding control treatments. Aspergillus wentii, Fusarium solani, Mucor sp., and Penicillum sp. were found most effective (statistically at par) in reducing C:N ratio and causing maximum loss of carbon and dry matter in composted materials. These benefits of CDMs inoculation were also accompanied by significant increase in NPK contents in the composted materials.

Concepts: Photosynthesis, Bacteria, Fungus, Compost, Chemical decomposition, Decomposition, Composting, Eichhornia crassipes


The efficiency of home composting programmes and the quality of the produced compost was evaluated in eight rural areas carrying out home composting programmes (up to 880 composting bins) for all household biowaste including meat and fish leftovers. Efficiency was analysed in terms of reduction of organic waste collected by the municipal services. An efficiency of 77% on average was obtained, corresponding to a composting rate of 126kg/person·year of biowaste (or 380kg/composter·year). Compost quality was determined for a total of 90 composting bins. The operation of composting bins by users was successful, as indicated by a low C/N ratio (10-15), low inappropriate materials (or physical contaminant materials, mean of 0.27±0.44% dry matter), low heavy metal content (94% of samples met required standards for agricultural use) and high nutrient content (2.1% N, 0.6% P, 2.5% K, 0.7% Mg and 3.7% Ca on average, dry matter). The high moisture (above 70% in 48% of the samples) did not compromise the compost quality. Results of this study show that home composting of household organic waste including meat and fish leftovers is a feasible practice. Home composting helps individuals and families to reduce the amount of household waste at the same time gaining a fertiliser material (compost) of excellent quality for gardens or vegetable plots.

Concepts: Agriculture, Waste management, Heavy metal music, Biodegradable waste, Compost, Composting, Vermicompost, Home composting