Discover the most talked about and latest scientific content & concepts.

Concept: Composite material


Ferromagnetic nanostructures have been electrodeposited within the pores of porous silicon templates with average pore diameters between 25 and 60 nm. In this diameter regime, the pore formation in general is accompanied by dendritic growth resulting in rough pore walls, which involves metal deposits also offering a branched structure. These side branches influence the magnetic properties of the composite system not only due to modified and peculiar stray fields but also because of a reduced interpore spacing by the approaching of adjacent side pores. To improve the morphology of the porous silicon structures, a magnetic field up to 8 T has been applied during the formation process. The magnetic field etching results in smaller pore diameters with less dendritic side pores. Deposition of a ferromagnetic metal within these templates leads to less branched nanostructures and, thus, to an enhancement of the coercivity of the system and also to a significantly increased magnetic anisotropy. So magnetic field-assisted etching is an appropriate tool to improve the structure of the template concerning the decrease of the dendritic pore growth and to advance the magnetic properties of the composite material.

Concepts: Magnetic field, Magnet, Paramagnetism, Magnetism, Ferromagnetism, Composite material, Hysteresis, Boeing 787


The magnetic chitosan nanocomposites have been studied intensively and been used practically in various biomedical and biological applications including enzyme immobilization. However, the loading capacity and the remained activity of immobilized enzyme based on existing approaches are not satisfied. Simpler and more effective immobilization strategies are needed. Here we report a simple catechol modified protocol for preparing a novel catechol-chitosan (CCS)-iron oxide nanoparticles (IONPs) composites carrying adhesive moieties with strong surface affinity. The ω-transaminase (ω-TA) was immobilized onto this magnetic composite via nucleophilic reactions between catechol and ω-TA. Under optimal conditions, 87.5% of the available ω-TA was immobilized on the composite, yielding an enzyme loading capacity as high as 681.7 mg/g. Furthermore, the valuation of enzyme activity showed that ω-TA immobilized on CCS-IONPs displayed enhanced pH and thermal stability compared to free enzyme. Importantly, the immobilized ω-TA retained more than 50% of its initial activity after 15 repeated reaction cycles using magnetic separation and 61.5% of its initial activity after storage at 4°C in phosphate buffered saline (PBS) for 15 days. The results suggested that such adhesive magnetic composites may provide an improved platform technology for bio-macromolecules immobilized.

Concepts: Enzyme, PH, Composite material, Buffer solution, Enzymes, Immobilized enzyme, Epoxy, Composite video


Carbon nanotubes (CNTs) are often used as conductive fillers in composite materials, but electrical conductivity is limited by the maximum filler concentration that is necessary to maintain composite structures. This paper presents further improvement in electrical conductivity by precipitating gold nanoparticles onto CNTs. In our composites, the concentrations of CNTs and poly (vinyl acetate) were respectively 60 and 10 vol%. Four different gold concentrations, 0, 10, 15, or 20 vol% were used to compare the influence of the gold precipitation on electrical conductivity and thermopower of the composites. The remaining portion was occupied by poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), which de-bundled and stabilized CNTs in water during synthesis processes. The concentrations of gold nanoparticles are below the percolation threshold of similar composites. However, with 15-vol% gold, the electrical conductivity of our composites was as high as ∼6×10(5) S/m, which is at least ∼500% higher than those of similar composites as well as orders of magnitude higher than those of other polymer composites containing CNTs and gold particles. According to our analysis with a variable range hopping model, the high conductivity can be attributed to gold doping on CNT networks. Additionally, the electrical properties of composites made of different types of CNTs were also compared.

Concepts: Nanoparticle, Water, Nanomaterials, Gold, Composite material, Colloidal gold, Electrical conductivity, Carbon fiber


Silver nanoparticle (Ag NP)-loaded chitosan composites have numerous biomedical applications; however, fabricating uniform composite microparticles remains challenging. This paper presents a novel microfluidic approach for single-step and in situ synthesis of Ag NP-loaded chitosan microparticles. This proposed approach enables obtaining uniform and monodisperse Ag NP-loaded chitosan microparticles measuring several hundred micrometers. In addition, the diameter of the composites can be tuned by adjusting the flow on the microfluidic chip. The composite particles containing Ag NPs were characterized using UV-vis spectra and scanning electron microscopy-energy dispersive X-ray spectrometry data. The characteristic peaks of Ag NPs in the UV-vis spectra and the element mapping or pattern revealed the formation of nanosized silver particles. The results of antibacterial tests indicated that both chitosan and composite particles showed antibacterial ability, and Ag NPs could enhance the inhibition rate and exhibited dose-dependent antibacterial ability. Because of the properties of Ag NPs and chitosan, the synthesized composite microparticles can be used in several future potential applications, such as bactericidal agents for water disinfection, antipathogens, and surface plasma resonance enhancers.

Concepts: Synthesis, Composite material, Silver, In situ, Microfluidics, Composite video, Aramid, Kevlar


Despite the fact that magnetic thrombolytic composites is an emerging area, all known so far systems are based on the similar mechanism of action: thrombolytic enzyme releases from the magnetic carrier leaving non-active matrix, thus making the whole system active only for a limited period of time. Such systems often have very complex structure organization and composition, consisting of materials not approved for parenteral injection, making them poor candidates for real clinical trials and implementation. Here we report, for the first time, the production of thrombolytic magnetic composite material with non-releasing behavior and prolonged action. Obtained composite shows good thrombolytic activity, consists of fully biocompatible materials and could be applied as infinitely active thrombolytic coatings or magnetically-targetable thrombolytic agents.

Concepts: Time, Composite material, Route of administration, Boeing 787


The chemical structure and electronic properties of two-dimensional (2D) carbon supported TiO(2), TiO(2)-graphdiyne and TiO(2)-graphene composites have been studied by first-principles density functional theory. Calculation results show that TiO(2)(001)-graphdiyne composites possess superior charge separation and oxidation properties, having the longest lifetimes of photo-excited carriers among all the 2D composites containing TiO(2) of different facets. Our experimental results further proved that TiO(2)(001)-graphdiyne composites could be a promising photocatalyst. For photocatalytic degradation of methylene blue, the rate constant of the TiO(2)(001)-graphdiyne composite is 1.63  0.15 times that of the pure TiO(2)(001) and 1.27±0.12 times that of the TiO(2)(001)-graphene composite.

Concepts: Chemistry, Science, Nitrogen, Carbon, Density functional theory, Experiment, Composite material, Theory


Novel MoO(2)/C nano/microcomposites were prepared via a bottom-up approach by hydrothermal carbonization of a solution of glucose as a carbon precursor in the presence of polyoxometalates (POMs: phosphomolybdic acid [H(3)PMo(12)O(40)] and ammonium heptamolybdate tetrahydrate [(NH(4))(6)Mo(7)O(24)]·4H(2)O). The structural characterization by FT-IR, XRPD, SEM and TEM analyses revealed the controlled formation of hierarchical MoO(2)/C composites with different morphologies: strawberry-like, based on carbon microspheres decorated with MoO(2) nanoparticles; MoO(2)/C core-shell composites; and irregular aggregates in combination with ring-like microstructures bearing amorphous Mo species. These composites can be fine-tuned by varying reaction time, glucose/POM ratio and type of POM precursor. Subsequent transformations in the solid state through calcinations of MoO(2)/C core-shell composites in air lead to hollow nanostructured molybdenum trioxide microspheres together with nanorods and plate microcrystals or cauliflower-like composites (MoO(2)/C). In addition, the MoO(2)/C composite undergoes a morphology evolution to urchin-like composites when it is calcined under nitrogen atmosphere (MoO(2)/C-N(2)). The MoO(2)/C strawberry-like and MoO(2)/C-N(2) composites were transformed into Mo carbide and nitride supported on carbon microspheres (Mo(2)C/C, MoN/C, and MoN/C-N(2)). These phases were tested as precursors in thiophene hydrodesulphurization (HDS) at 400 °C, observing the following trend in relation to the thiophene steady-state conversion: MoN/C-N(2) > MoN/C > Mo(2)C/C > MoO(2)/C-N(2) > MoO(2)/C. According to these conversion values, a direct correlation was observed between higher HDS activity and decreasing crystal size as estimated from the Scherrer equation. These results suggest that such composites represent interesting and promising precursors for HDS catalysts, where the activity and stability can be modified either by chemical or structural changes of the composites under different conditions.

Concepts: Oxygen, Crystal, Nitrogen, Nanomaterials, Molybdenum, Composite material, Glass, Ammonium heptamolybdate


Ni microparticle-filled binary polymer composites were developed as temperature sensors which possess greater improved reproducibility compared to single polymer composite sensors.

Concepts: Composite material, Carbon fiber


The co-processing of active pharmaceutical ingredient (API) with an excipient which has a high glass transition temperature (Tg) is a recognised strategy to stabilise the amorphous form of a drug. This work investigates whether co-processing a model API, sulfadimidine (SDM) with a series of low Tg excipients prevents or reduces amorphisation of the crystalline drug. It was hypothesised that these excipients could exert a Tg lowering effect, resulting in composite Tg values lower than that of the API alone and promote crystallisation of the drug. Milled SDM and co-milled SDM with glutaric acid (GA), adipic acid (AA), succinic acid (SA) and malic acid (MA) were characterised with respect to their thermal, X-Ray diffraction, spectroscopic and vapour sorption properties. SDM was predominantly amorphous when milled alone, with an amorphous content of 82 %. No amorphous content was detected by dynamic vapour sorption (DVS) on co-milling SDM with 50 % w/w GA, and amorphous content of the API was reduced by almost 30 %, relative to the API milled alone, on co-milling with 50 % w/w AA. In contrast, amorphisation of SDM was promoted on co-milling with 50 % w/w SA and MA, as indicated by near infrared (NIR) spectroscopy. Results indicated that the API was completely amorphised in the SDM:MA co-milled composite. The saturated solubility of GA and AA in the amorphous API was estimated by thermal methods. It was observed that the Tg of the co-melt quenched composites reached a minimum and levelled out at this solubility concentration. Maximum crystallinity of API on co-milling was reached at excipient concentrations comparable to the saturated concentration solubility of excipient in the API. Moreover, the closer the Hildebrand solubility parameter of the excipient to the API, the greater was the inhibition of API amorphisation on co-milling. The results reported here indicate that an excipient with a low Tg coupled with high solubility in the API can prevent or reduce the generation of an amorphous phase on co-milling. Keywords: glass transition, amorphous, co-milling, solubility, excipient, thermal methods, vapour sorption, X- Ray diffraction.

Concepts: Temperature, Solubility, Composite material, Glass, Glass transition, Amorphous solid, Glutaric acid, Succinic acid


Graphene not only possesses interesting electrochemical behavior but also has a remarkable surface area and mechanical strength and is naturally abundant, all advantageous properties for the design of tailored composite materials. Graphene-semiconductor or -metal nanoparticle composites have the potential to function as efficient, multifunctional materials for energy conversion and storage. These next-generation composite systems could possess the capability to integrate conversion and storage of solar energy, detection, and selective destruction of trace environmental contaminants or achieve single-substrate, multistep heterogeneous catalysis. These advanced materials may soon become a reality, based on encouraging results in the key areas of energy conversion and sensing using graphene oxide as a support structure. Through recent advances, chemists can now integrate such processes on a single substrate while using synthetic designs that combine simplicity with a high degree of structural and composition selectivity. This progress represents the beginning of a transformative movement leveraging the advancements of single-purpose chemistry toward the creation of composites designed to address whole-process applications. The promising field of graphene nanocomposites for sensing and energy applications is based on fundamental studies that explain the electronic interactions between semiconductor or metal nanoparticles and graphene. In particular, reduced graphene oxide is a suitable composite substrate because of its two-dimensional structure, outstanding surface area, and electrical conductivity. In this Account, we describe common assembly methods for graphene composite materials and examine key studies that characterize its excited state interactions. We also discuss strategies to develop graphene composites and control electron capture and transport through the 2D carbon network. In addition, we provide a brief overview of advances in sensing, energy conversion, and storage applications that incorporate graphene-based composites. With these results in mind, we can envision a new class of semiconductor- or metal-graphene composites sensibly tailored to address the pressing need for advanced energy conversion and storage devices.

Concepts: Nanoparticle, Sun, Nanomaterials, Composite material, Solar energy, Solar power, Boeing 787, Carbon fiber