Discover the most talked about and latest scientific content & concepts.

Concept: Common Pipistrelle


Echolocating bats construct an auditory world sequentially by analyzing successive pulse-echo pairs. Many other mammals rely upon a visual world, acquired by sequential foveal fixations connected by visual gaze saccades. We investigated the scanning behavior of bats and compared it to visual scanning. We assumed that each pulse-echo pair evaluation corresponds to a foveal fixation and that sonar beam movements between pulses can be seen as acoustic gaze saccades. We used a two-dimensional 16 microphone array to determine the sonar beam direction of succeeding pulses and to characterize the three dimensional scanning behavior in the common pipistrelle bat (Pipistrellus pipistrellus) flying in the field. We also used variations of signal amplitude of single microphone recordings as indicator for scanning behavior in open space. We analyzed 33 flight sequences containing more than 700 echolocation calls to determine bat positions, source levels, and beam aiming. When searching for prey and orienting in space, bats moved their sonar beam in all directions, often alternately back and forth. They also produced sequences with irregular or no scanning movements. When approaching the array, the scanning movements were much smaller and the beam was moved over the array in small steps. Differences in the scanning pattern at various recording sites indicated that the scanning behavior depended on the echolocation task that was being performed. The scanning angles varied over a wide range and were often larger than the maximum angle measurable by our array. We found that echolocating bats use a “saccade and fixate” strategy similar to vision. Through the use of scanning movements, bats are capable of finding and exploring targets in a wide search cone centered along flight direction.

Concepts: Dimension, Sequence, Animal echolocation, Bat, Microbat, Common Pipistrelle, Pipistrellus, Soprano Pipistrelle


Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50-150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi’s pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely.

Concepts: Little brown bat, Wind power, Bats, Wind turbine, Common Pipistrelle, Pipistrellus, Soprano Pipistrelle, Mouse-eared bat


Conflict can arise when bats roost in human dwellings and householders are affected adversely by their presence. In the United Kingdom, the exclusion of bats from roosts can be licensed under exceptional circumstances to alleviate conflict, but the fate of excluded bats and the impact on their survival and reproduction is not well understood. Using radio-tracking, we investigated the effects of exclusion on the soprano pipistrelle Pipistrellus pygmaeus, a species that commonly roosts in buildings in Europe. Exclusions were performed under licence at five roosts in England in spring, when females were in the early stages of pregnancy. Following exclusion, all bats found alternative roosts and colonies congregated in nearby known roosts that had been used by radio-tagged bats prior to exclusion. We found no difference in roosting behaviour before and after exclusion. Both the frequency of roost switching and the type of roosts used by bats remained unchanged. We also found no change in foraging behaviour. Bats foraged in the same areas, travelled similar distances to reach foraging areas and showed similar patterns of habitat selection before and after exclusion. Population modelling suggested that any reduction in survival following exclusion could have a negative impact on population growth, whereas a reduction in productivity would have less effect. While the number of soprano pipistrelle exclusions currently licensed each year is likely to have little effect on local populations, the cumulative impacts of licensing the destruction of large numbers of roosts may be of concern.

Concepts: Demography, Population, World population, License, Common Pipistrelle, Pipistrellus, Soprano Pipistrelle, Eastern Pipistrelle


Frequency shifts in signals of bats flying near conspecifics have been interpreted as a spectral jamming avoidance response (JAR). However, several prerequisites supporting a JAR hypothesis have not been controlled for in previous studies. We recorded flight and echolocation behavior of foraging Pipistrellus pipistrellus while flying alone and with a conspecific and tested whether frequency changes were due to a spectral JAR with an increased frequency difference, or whether changes could be explained by other reactions. P. pipistrellus reacted to conspecifics with a reduction of sound duration and often also pulse interval, accompanied by an increase in terminal frequency. This reaction is typical of behavioral situations where targets of interest have captured the bat’s attention and initiated a more detailed exploration. All observed frequency changes were predicted by the attention reaction alone, and do not support the JAR hypothesis of increased frequency separation. Reaction distances of 1-11 m suggest that the attention response may be elicited either by detection of the conspecific by short range active echolocation or by long range passive acoustic detection of echolocation calls.

Concepts: Scientific method, Psychology, Hypothesis, Ultrasound, Bat, Common Pipistrelle, Pipistrellus, Soprano Pipistrelle


Artificial lighting is a particular problem for animals active at night. Approximately 69% of mammal species are nocturnal, and one-third of these are bats. Due to their extensive movements-both on a nightly basis to exploit ephemeral food supplies, and during migration between roosts-bats have an unusually high probability of encountering artificial light in the landscape. This paper reviews the impacts of lighting on bats and their prey, exploring the direct and indirect consequences of lighting intensity and spectral composition. In addition, new data from large-scale surveys involving more than 265 000 bat calls at more than 600 locations in two countries are presented, showing that prevalent street-lighting types are not generally linked with increased activity of common and widespread bat species. Such bats, which are important to ecosystem function, are generally considered ‘light-attracted’ and likely to benefit from the insect congregations that form at lights. Leisler’s bat (Nyctalus leisleri) may be an exception, being more frequent in lit than dark transects. For common pipistrelle bats (Pipistrellus pipistrellus), lighting is negatively associated with their distribution on a landscape scale, but there may be local increases in habitats with good tree cover. Research is now needed on the impacts of sky glow and glare for bat navigation, and to explore the implications of lighting for habitat matrix permeability.

Concepts: Light, Mammal, Lighting, Bat, Light pollution, Vesper bats, Common Pipistrelle, Pipistrellus


Babesia vesperuginis was molecularly detected in 10% (5/48) of common pipistrelle bats ( Pipistrellus pipistrellus) in Shihezi City, Northwestern China. Interestingly, four bat ticks ( Argas vespertilionis), from Babesia DNA-positive common pipistrelle bats, were also positive for B. vesperuginis. Our findings extend the geographic range of the common pipistrelle bat as a reservoir of B. vesperuginis in Asia.

Concepts: United States, Lyme disease, Babesiosis, Republic of China, Xinjiang, Common Pipistrelle, Pipistrellus, Soprano Pipistrelle


Detailed knowledge of histomorphology is a prerequisite for the understanding of function, variation, and development. In bats, as in other mammals, penis and baculum morphology are important in species discrimination and phylogenetic studies. In this study, nondestructive 3D-microtomographic (microCT, µCT) images of bacula and iodine-stained penes of Pipistrellus pipistrellus were correlated with light microscopic images from undecalcified surface-stained ground sections of three of these penes of P. pipistrellus (1 juvenile). The results were then compared with µCT-images of bacula of P. pygmaeus, P. hanaki, and P. nathusii. The Y-shaped baculum in all studied Pipistrellus species has a proximal base with two club-shaped branches, a long slender shaft, and a forked distal tip. The branches contain a medullary cavity of variable size, which tapers into a central canal of variable length in the proximal baculum shaft. Both are surrounded by a lamellar and a woven bone layer and contain fatty marrow and blood vessels. The distal shaft consists of woven bone only, without a vascular canal. The proximal ends of the branches are connected with the tunica albuginea of the corpora cavernosa via entheses. In the penis shaft, the corpus spongiosum-surrounded urethra lies in a ventral grove of the corpora cavernosa, and continues in the glans under the baculum. The glans penis predominantly comprises an enlarged corpus spongiosum, which surrounds urethra and baculum. In the 12 studied juvenile and subadult P. pipistrellus specimens the proximal branches of the baculum were shorter and without marrow cavity, while shaft and distal tip appeared already fully developed. The present combination with light microscopic images from one species enabled a more reliable interpretation of histomorphological structures in the µCT-images from all four Pipistrellus species. J. Morphol. 276:695-706, 2015. © 2015 Wiley Periodicals, Inc.

Concepts: Bone, Andrology, Penis, Erection, Corpus cavernosum penis, Glans penis, Common Pipistrelle, Corpus spongiosum penis


Bats from the families Rhinolophidae (n = 90) and Vespertilionidae (n = 191) in the USA and Czech Republic were screened for the presence of Cryptosporidium by microscopic and molecular analysis of faecal samples collected from rectum of dissected animals and from the ground beneath roosting sites. Cryptosporidium oocysts were not detected in any of the 281 faecal specimens examined using the aniline-carbol-methyl violet staining method. Nested PCR amplification, sequencing and phylogenetic analysis of the small ribosomal subunit rRNA and actin genes were used to identify isolates and infer evolutionary relationships. Cryptosporidium parvum was identified in a western small-footed bat (Myotis ciliolabrum) from the USA and a common pipistrelle bats (Pipistrellus pipistrellus) from the Czech Republic. Two novel genotypes were identified and named Cryptosporidium bat genotype III and IV. Bat genotype III was found in two big brown bats (Eptesicus fuscus) from the USA. Bat genotype IV was detected in two common pipistrelle bats from the Czech Republic.

Concepts: DNA, Gene, Evolution, Molecular biology, Biology, Big brown bat, Common Pipistrelle, Pipistrellus


Abstract No coronavirus was detected by PCR in lung and intestine samples of 100 bats, mostly common pipistrelles (Pipistrellus pipistrellus), collected dead between 2008 and 2013 for rabies surveillance in Belgium. The negative results contrast with the high prevalence of coronaviruses detected in fecal pellets from live-captured bats in some European countries.

Concepts: Disease, Europe, French language, German language, Rabies, Common Pipistrelle, Pipistrellus