SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Common Bottlenose Dolphin

138

A northern Gulf of Mexico (GoM) cetacean unusual mortality event (UME) involving primarily bottlenose dolphins (Tursiops truncatus) in Louisiana, Mississippi, and Alabama began in February 2010 and continued into 2014. Overlapping in time and space with this UME was the Deepwater Horizon (DWH) oil spill, which was proposed as a contributing cause of adrenal disease, lung disease, and poor health in live dolphins examined during 2011 in Barataria Bay, Louisiana. To assess potential contributing factors and causes of deaths for stranded UME dolphins from June 2010 through December 2012, lung and adrenal gland tissues were histologically evaluated from 46 fresh dead non-perinatal carcasses that stranded in Louisiana (including 22 from Barataria Bay), Mississippi, and Alabama. UME dolphins were tested for evidence of biotoxicosis, morbillivirus infection, and brucellosis. Results were compared to up to 106 fresh dead stranded dolphins from outside the UME area or prior to the DWH spill. UME dolphins were more likely to have primary bacterial pneumonia (22% compared to 2% in non-UME dolphins, P = .003) and thin adrenal cortices (33% compared to 7% in non-UME dolphins, P = .003). In 70% of UME dolphins with primary bacterial pneumonia, the condition either caused or contributed significantly to death. Brucellosis and morbillivirus infections were detected in 7% and 11% of UME dolphins, respectively, and biotoxin levels were low or below the detection limit, indicating that these were not primary causes of the current UME. The rare, life-threatening, and chronic adrenal gland and lung diseases identified in stranded UME dolphins are consistent with exposure to petroleum compounds as seen in other mammals. Exposure of dolphins to elevated petroleum compounds present in coastal GoM waters during and after the DWH oil spill is proposed as a cause of adrenal and lung disease and as a contributor to increased dolphin deaths.

Concepts: Death, Pneumonia, Cetacean intelligence, Animal echolocation, Bottlenose dolphin, Great white shark, Common Bottlenose Dolphin, Gulf of Mexico

67

Vocal learning is relatively common in birds but less so in mammals. Sexual selection and individual or group recognition have been identified as major forces in its evolution. While important in the development of vocal displays, vocal learning also allows signal copying in social interactions. Such copying can function in addressing or labelling selected conspecifics. Most examples of addressing in non-humans come from bird song, where matching occurs in an aggressive context. However, in other animals, addressing with learned signals is very much an affiliative signal. We studied the function of vocal copying in a mammal that shows vocal learning as well as complex cognitive and social behaviour, the bottlenose dolphin (Tursiops truncatus). Copying occurred almost exclusively between close associates such as mother-calf pairs and male alliances during separation and was not followed by aggression. All copies were clearly recognizable as such because copiers consistently modified some acoustic parameters of a signal when copying it. We found no evidence for the use of copying in aggression or deception. This use of vocal copying is similar to its use in human language, where the maintenance of social bonds appears to be more important than the immediate defence of resources.

Concepts: Bottlenose dolphin, Common Bottlenose Dolphin

64

Mirror-self recognition (MSR) is a behavioral indicator of self-awareness in young children and only a few other species, including the great apes, dolphins, elephants and magpies. The emergence of self-awareness in children typically occurs during the second year and has been correlated with sensorimotor development and growing social and self-awareness. Comparative studies of MSR in chimpanzees report that the onset of this ability occurs between 2 years 4 months and 3 years 9 months of age. Studies of wild and captive bottlenose dolphins (Tursiops truncatus) have reported precocious sensorimotor and social awareness during the first weeks of life, but no comparative MSR research has been conducted with this species. We exposed two young bottlenose dolphins to an underwater mirror and analyzed video recordings of their behavioral responses over a 3-year period. Here we report that both dolphins exhibited MSR, indicated by self-directed behavior at the mirror, at ages earlier than generally reported for children and at ages much earlier than reported for chimpanzees. The early onset of MSR in young dolphins occurs in parallel with their advanced sensorimotor development, complex and reciprocal social interactions, and growing social awareness. Both dolphins passed subsequent mark tests at ages comparable with children. Thus, our findings indicate that dolphins exhibit self-awareness at a mirror at a younger age than previously reported for children or other species tested.

Concepts: Bottlenose dolphin, Common Bottlenose Dolphin

24

An unusual mortality event (UME) involving primarily common bottlenose dolphins Tursiops truncatus of all size classes stranding along coastal Louisiana, Mississippi, and Alabama, USA, started in early 2010 and continued into 2014. During this northern Gulf of Mexico UME, a distinct cluster of perinatal dolphins (total body length <115 cm) stranded in Mississippi and Alabama during 2011. The proportion of annual dolphin strandings that were perinates between 2009 and 2013 were compared to baseline strandings (2000-2005). A case-reference study was conducted to compare demographics, histologic lesions, and Brucella sp. infection prevalence in 69 UME perinatal dolphins to findings from 26 reference perinates stranded in South Carolina and Florida outside of the UME area. Compared to reference perinates, UME perinates were more likely to have died in utero or very soon after birth (presence of atelectasis in 88 vs. 15%, p < 0.0001), have fetal distress (87 vs. 27%, p < 0.0001), and have pneumonia not associated with lungworm infection (65 vs. 19%, p = 0.0001). The percentage of perinates with Brucella sp. infections identified via lung PCR was higher among UME perinates stranding in Mississippi and Alabama compared to reference perinates (61 vs. 24%, p = 0.01), and multiple different Brucella omp genetic sequences were identified in UME perinates. These results support that from 2011 to 2013, during the northern Gulf of Mexico UME, bottlenose dolphins were particularly susceptible to late-term pregnancy failures and development of in utero infections including brucellosis.

Concepts: Cetacean intelligence, Animal echolocation, Bottlenose dolphin, Common Bottlenose Dolphin, Florida, Mississippi, Gulf of Mexico, Alabama

24

Common bottlenose dolphins (Tursiops truncatus) inhabit bays, sounds and estuaries across the Gulf of Mexico. Following the Deepwater Horizon oil spill, studies were initiated to assess potential effects on these ecologically important apex predators. A previous study reported disease conditions, including lung disease and impaired stress response, for 32 dolphins that were temporarily captured and given health assessments in Barataria Bay, Louisiana, USA. Ten of the sampled dolphins were determined to be pregnant, with expected due dates the following spring or summer. Here, we report findings after 47 months of follow-up monitoring of those sampled dolphins. Only 20% (95% CI: 2.50-55.6%) of the pregnant dolphins produced viable calves, as compared with a previously reported pregnancy success rate of 83% in a reference population. Fifty-seven per cent of pregnant females that did not successfully produce a calf had been previously diagnosed with moderate-severe lung disease. In addition, the estimated annual survival rate of the sampled cohort was low (86.8%, 95% CI: 80.0-92.7%) as compared with survival rates of 95.1% and 96.2% from two other previously studied bottlenose dolphin populations. Our findings confirm low reproductive success and high mortality in dolphins from a heavily oiled estuary when compared with other populations. Follow-up studies are needed to better understand the potential recovery of dolphins in Barataria Bay and, by extension, other Gulf coastal regions impacted by the spill.

Concepts: Cetacean intelligence, Animal echolocation, Bottlenose dolphin, Great white shark, Common Bottlenose Dolphin

19

Targeted approaches have been widely used to help explain physiological adaptations, but few studies have used non-targeted omics approaches to explore differences between diving marine mammals and terrestrial mammals. A rank comparison of undepleted serum proteins from common bottlenose dolphins (Tursiops truncatus) and pooled normal human serum led to the discovery of 11 proteins that appeared exclusive to dolphin serum. Compared to the comprehensive human plasma proteome, 5 of 11 serum proteins had a differential rank greater than 200. One of these proteins, Vanin-1, was quantified using parallel reaction monitoring in dolphins under human care and free-ranging dolphins. Dolphin serum Vanin-1 ranged between 31-106 μg/ml, which is 20-1000 times higher than concentrations reported for healthy humans. Serum Vanin-1 was also higher in dolphins under human care compared to free-ranging dolphins (64 ± 16 vs. 47 ± 12 μg/ml P < 0.05). Vanin-1 levels positively correlated with liver enzymes AST and ALT, and negatively correlated with white blood cell counts and fibrinogen in free-ranging dolphins. Major differences exist in the circulating blood proteome of the bottlenose dolphin compared to terrestrial mammals and exploration of these differences in bottlenose dolphins and other marine mammals may identify veiled protective strategies to counter physiological stress.

Concepts: Protein, Blood, Cetacean intelligence, Animal echolocation, Bottlenose dolphin, Great white shark, Common Bottlenose Dolphin, Dolphin

19

The oil spill resulting from the explosion of the Deepwater Horizon drilling platform initiated immediate concern for marine wildlife, including common bottlenose dolphins in sensitive coastal habitats. To evaluate potential sublethal effects on dolphins, health assessments were conducted in Barataria Bay, Louisiana, an area that received heavy and prolonged oiling, and in a reference site, Sarasota Bay, Florida, where oil was not observed. Dolphins were temporarily captured, received a veterinary examination, and were then released. Dolphins sampled in Barataria Bay showed evidence of hypoadrenocorticism, consistent with adrenal toxicity as previously reported for laboratory mammals exposed to oil. Barataria Bay dolphins were 5 times more likely to have moderate-severe lung disease, generally characterized by significant alveolar interstitial syndrome, lung masses, and pulmonary consolidation. Of 29 dolphins evaluated from Barataria Bay, 48% were given a guarded or worse prognosis, and 17% were considered poor or grave, indicating that they were not expected to survive. Disease conditions in Barataria Bay dolphins were significantly greater in prevalence and severity than those in Sarasota Bay dolphins, as well as those previously reported in other wild dolphin populations. Many disease conditions observed in Barataria Bay dolphins are uncommon but consistent with petroleum hydrocarbon exposure and toxicity.

Concepts: Petroleum, Cetacean intelligence, Animal echolocation, Bottlenose dolphin, Great white shark, Common Bottlenose Dolphin, Dolphin

18

Understanding trophic relationships among marine predators in remote environments is challenging, but it is critical to understand community structure and dynamics. In this study, we used stable isotope analysis of skin biopsies to compare the isotopic, and thus, trophic niches of three sympatric delphinids in the waters surrounding Palmyra Atoll, in the Central Tropical Pacific: the melon-headed whale (Peponocephala electra), Gray’s spinner dolphin (Stenella longirostris longirostris), and the common bottlenose dolphin (Tursiops truncatus). δ15N values suggested that T. truncatus occupied a significantly higher trophic position than the other two species. δ13C values did not significantly differ between the three delphinds, potentially indicating no spatial partitioning in depth or distance from shore in foraging among species. The dietary niche area-determined by isotopic variance among individuals-of T. truncatus was also over 30% smaller than those of the other species taken at the same place, indicating higher population specialization or lower interindividual variation. For P. electra only, there was some support for intraspecific variation in foraging ecology across years, highlighting the need for temporal information in studying dietary niche. Cumulatively, isotopic evidence revealed surprisingly little evidence for trophic niche partitioning in the delphinid community of Palmyra Atoll compared to other studies. However, resource partitioning may happen via other behavioral mechanisms, or prey abundance or availability may be adequate to allow these three species to coexist without any such partitioning. It is also possible that isotopic signatures are inadequate to detect trophic partitioning in this environment, possibly because isotopes of prey are highly variable or insufficiently resolved to allow for differentiation.

Concepts: Ecology, Bottlenose dolphin, Common Bottlenose Dolphin, Cetacea, Oceanic dolphins

17

Globally distributed, the bottlenose dolphin (Tursiops truncatus) is found in a range of offshore and coastal habitats. Using 15 microsatellite loci and mtDNA control region sequences, we investigated patterns of genetic differentiation among putative populations along the eastern US shoreline (the Indian River Lagoon, Florida, and Charleston Harbor, South Carolina) (microsatellite analyses: n = 125, mtDNA analyses: n = 132). We further utilized the mtDNA to compare these populations with those from the Northwest Atlantic, Gulf of Mexico, and Caribbean. Results showed strong differentiation among inshore, alongshore, and offshore habitats (ФST = 0.744). In addition, Bayesian clustering analyses revealed the presence of 2 genetic clusters (populations) within the 250 km Indian River Lagoon. Habitat heterogeneity is likely an important force diversifying bottlenose dolphin populations through its influence on social behavior and foraging strategy. We propose that the spatial pattern of genetic variation within the lagoon reflects both its steep longitudinal transition of climate and also its historical discontinuity and recent connection as part of Intracoastal Waterway development. These findings have important management implications as they emphasize the role of habitat and the consequence of its modification in shaping bottlenose dolphin population structure and highlight the possibility of multiple management units existing in discrete inshore habitats along the entire eastern US shoreline.

Concepts: Cetacean intelligence, Animal echolocation, Bottlenose dolphin, Great white shark, Common Bottlenose Dolphin

15

Both natural and human-related foraging strategies by the common bottlenose dolphin (Tursiops truncatus) have resulted in social segregation in several areas of the world. Bottlenose dolphins near Savannah, Georgia beg at an unprecedented rate and also forage behind commercial shrimp trawlers, providing an opportunity to study the social ramifications of two human-related foraging behaviors within the same group of animals. Dolphins were photo-identified via surveys conducted throughout estuarine waterways around Savannah in the summers of 2009-2011. Mean half-weight indices (HWI) were calculated for each foraging class, and community division by modularity was used to cluster animals based on association indices. Pairs of trawler dolphins had a higher mean HWI (0.20 ± 0.07) than pairs of non-trawler dolphins (0.04 ± 0.02) or mixed pairs (0.02 ± 0.02). In contrast, pairs of beggars, non-beggars, and mixed pairs all had similar means, with HWI between 0.05-0.07. Community division by modularity produced a useful division (0.307) with 6 clusters. Clusters were predominately divided according to trawler status; however, beggars and non-beggars were mixed throughout clusters. Both the mean HWI and social clusters revealed that the social structure of common bottlenose dolphins near Savannah, Georgia was differentiated based on trawler status but not beg status. This finding may indicate that foraging in association with trawlers is a socially learned behavior, while the mechanisms for the propagation of begging are less clear. This study highlights the importance of taking into account the social parameters of a foraging behavior, such as how group size or competition for resources may affect how the behavior spreads. The positive or negative ramifications of homophily may influence whether the behaviors are exhibited by individuals within the same social clusters and should be considered in future studies examining social relationships and foraging behaviors.

Concepts: Bottlenose dolphin, Common Bottlenose Dolphin